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ARTICLE

A spatial dynamic model of population changes in a
vulnerable coastal environment
Kenan Li and Nina S. N. Lam

Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA

ABSTRACT
This study developed a spatial dynamic model to examine the
coupled natural–human responses in the form of changes in
population and associated developed land area in the Lower
Mississippi River Basin region. The goal was to identify key socio-
economic factors (utility) and environmental factors (hazard
damages, elevation, and subsidence rate) that affected population
changes, as well as to examine how population changes affected
the local utility and the local environment reciprocally. We first
applied areal interpolation techniques with the volume-preserving
property to transform all the data at Year 2000 into a unified 3 km
by 3 km cellular space. We then built an Elastic Net model to
extract 12 variables from a set of 33 for the spatial dynamic model.
Afterward, we calibrated the neighborhood effects with a genetic
algorithm and use the spatial dynamic model to simulate popula-
tion and developed land area in 2010. Furthermore, we took a
Monte Carlo approach for analyzing the uncertainty of the model
outcome. Our accuracy assessment shows that the model on
average slightly overpredicts the number of population and the
developed land percentage at 2010, as indicated by the low values
of mean absolute deviation (MAD) due to quantity. On the other
hand, the MADs due to allocation are larger than the MADs due to
quantity, with most outliers found in the New Orleans region
where population and urban development declined significantly
during 2000–2010 after Hurricane Katrina. The proposed model
sheds light on the complex relationships between coastal hazards
and human responses and provides useful insights to strategic
development for coastal sustainability.
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1. Introduction

Coastal areas are subject to natural coastal hazards, including land loss, land subsidence,
coastal erosion, coastal flooding, tsunami, sea level rise, storm surges, and hurricanes. All these
hazards have negative effects on the sustainable development of the communities along the
coast. In the United States, the Lower Mississippi River Basin (LMRB) in southern Louisiana is
highly vulnerable to coastal hazards (Figure 1). During 2005–2015, the region experienced five
hurricanes (Katrina, Rita, Gustav, Ike, and Isaac), which caused substantial loss of human lives
and damages to properties (Lam et al. 2009a, 2009b, 2012, LeSage et al., 2011a, 2011b, 2011c),
plus the fact that this region was also experiencing serious land subsidence and land loss

CONTACT Kenan Li kli4@lsu.edu

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2018
VOL. 32, NO. 4, 685–710
https://doi.org/10.1080/13658816.2017.1407415

© 2017 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-5344-9368
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2017.1407415&domain=pdf


problem (Zou et al. 2016). With the impending threats of climate change and sea level rise,
coastal Louisiana is facing a serious challenge to protect the land from disappearing while
maintaining economic development, or in other words, to achieve coastal sustainability(Cai
et al. 2016, Lam et al. 2016).

There has been extensive research on the causes and consequences of increased land
loss vulnerability in the LMRB region (Blum and Roberts 2009). Moreover, substantial
efforts from governmental and nongovernmental agencies have also been made to
develop long-term master plans for coastal protection and restoration (Coastal
Protection and Restoration Agency (CPRA) of Louisiana, 2012). However, existing litera-
ture on coastal protection and restoration has largely focused on understanding the
natural environment, and few studies addressed the issues of human–environmental
interactions. Furthermore, very few publications examined the coupled natural and
human (CNH) systems in this coastal environment (Twilley et al. 2016). Studying how
the natural and human environments interact in the study region will contribute to a
better understanding of the dynamics of the coastal vulnerability and sustainability
problem, not only in this region but also in coastal regions worldwide (Liu J. et al.,
2007a, 2007b, Collins et al. 2011; Kates 2011). In particular, a gradual population growth
has been observed over the past decade in the northern part of the LMRB, in contrast
with a dramatic population decline in the southern coastal area (Qiang and Lam 2015,
2016). In fact, some of the population increase in the northern LMRB came from the
southern part of the region (Plyer 2013). This phenomenon signals a voluntary inland
migration that is not part of any governmental coastal restoration plan. Eliciting the

Figure 1. The study area with a hypothetical north–south boundary and its population distribution
in 2006 (based on LandScan data).
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decision factors that make people move in a vulnerable coastal region is critical to the
overall research on climate change adaptation and coastal sustainability.

In summary, the objective of this study is to develop a spatial dynamicmodel to understand
the CNH responses as reflected in changes in population and developed land area in the LMRB
during 2000–2010. With this objective, this study seeks to answer three related questions: (1)
what are the key socioeconomic factors (defined as utility hereafter) that trigger population
changes? (2) how important are environmental factors (such as exposure and damages from
natural coastal hazards, elevation, and subsidence rate) in affecting population changes in the
region? and (3) reciprocally, how do population changes affect local utility and local natural
environment, such as by increasing developed land area with more roads or canals, and
consequently fragmenting the landscape, and therefore leading tomore land loss. Answers to
these questions can provide valuable insights into the development of better strategies for
coastal sustainability. Finally, once a reliable spatial dynamicmodel is developedand validated,
it can be used by planners and decisionmakers to simulate patterns of population change and
evaluate long-term resilience and sustainability in the regionunder different climate changeor
policy scenarios.

2. Literature review and conceptual framework development

In assessing the resilience and sustainability of a place-based system, one must consider
both the natural and the human systems and evaluate how both systems are coupled
(Bolin et al. 2000, Liu et al. 2007a, 2007b, Collins et al. 2011; Kates 2011). Developing a
spatial dynamic model to understand and assess the coupling of human and natural
environments in a manner that could lead to resilience and sustainability of a region will
be very useful. The term CNH system was evolved to describe a branch of interdisci-
plinary study that examines how human components interact with natural components
in an integrated ecological and social system (Liu et al. 2007a, 2007b). With considera-
tion of the autonomous human factor, the traditional ‘top-down’ approach of coastal
restoration from the planners and decision makers may not be effective in coping with
the resilience and sustainability issues. In planning for coastal sustainability, we must
consider the ‘bottom-up’ facts of human responses and their decisions can provide
complementary insights into land resource management and economic development.

2.1 ‘Bottom-up’ methods in modeling CNH dynamics

Literature on population changes and CNH dynamics is extensive. Two major modeling
tools have been widely employed to understand the complexity: cellular automata (CA)
(Batty et al. 1994, 1997, Clarke and Gaydos 1998, Malanson et al. 2006a, 2006b, Qiang
and Lam 2015) and agent-based modeling (ABM) (Brown and Xie 2006).

A CA model uses cells with different states as the smallest modeling units, and defines
the rules for updating the states over time with consideration of the neighborhood effects.
In a CA model, each cell has a state space, which value is controlled by a set of CA rules to
determine the state of each cell at each time step according to its previous state and its
neighbor cells’ previous states. In some CA models (Boccara and Cheong 1992, 1993), the
cells can also have mobility with certain defined site-exchange rules. Figure 2 shows the
structure of a CA model.
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CA models have been extensively used to model urban development, such as the
Slope, Land-use, Exclusion, Urban extent, Transportation, and Hill-shade (SLEUTH) model
(Clarke et al. 1997), the dynamic urban evolution model (Xie 1997), the multi-criteria
evaluation-CA model (Wu and Webster 2000), the multi-agent system-CA model
(Ligtenberg et al. 2001), the GeoCA-Urban model (Zhou et al. 1999), the Voronoi-CA
model (Shi and Pang 2000), and the Markov-CA model (Vaz et al. 2012.). The major
differences among these cell-based methods are the factors used for the development
prediction. For example, the SLEUTH model is based on historical trends of land use
change data to derive transition rules to simulate future land use under different
developmental conditions. However, most of these land use change models are not
built in a CNH context, and they seldom consider the coupled feedbacks between urban
development, population growth, and socioeconomic factors like the one used in this
study.

ABM is an approach using agents to simulate the behavior of a complex system.
There is no universal agreement of the definition of the term ‘agent’ in the context of
ABM. Some studies considered any type of independent component, either a software
component or a sub-model, as an agent (Bonabeau 2002). Other researchers insist that
an agent’s behavior must include adaptive components to represent the responses of
the agents to the environment (Conte 2002). Jennings (2000) from a computer science
perspective emphasized the autonomous behavior of an agent an essential character-
istic in an ABM. Figure 3 shows the basic structure of an ABM, which emphasizes some
common points shared by these various definitions. These common characteristics of
ABMs include the following: (1) agents have the ability to change their physical locations

Figure 2. Structure of a cellular automation model.
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and modify their attributes, (2) agents can actively sense the environment conditions
and respond accordingly, and (3) agents can interact with other agents within their
perspectives.

There are substantial overlaps between CA and ABM approaches. Both share similar
issues in modeling CNH dynamics from the bottom-up. Two major problems are (1) what
are the factors to be included in the dynamics and (2) how to explicitly define the
parameters of the dynamics using empirical information. For the first problem, different
studies in CNH used their different favorite decision factors, such as human life cycle,
economic motivation, neighborhood facilities, environmental amenities, and/or housing
quality (Lindberg et al. 1992, Nijkamp et al. 1993, Dökmeci and Berköz 2000; Torrens
2001, Yin and Muller 2007, Niedomysl 2008). Fontaine and Rounsevell (2009) integrated
household life-cycle events in their HI-LIFE ABM. However, with few exceptions (Schultz
and Elliott 2012), few studies modeled population changes and CNH dynamics in the
context of hazard, vulnerability, or resilience.

For the second problem, Li and Liu (2007) determined the parameters of their ABM
according to multi-criteria evaluation techniques. However, their method assumed all
the modeling units performed the same way as experts. Recent urban residential
dynamics studies extended traditional urban economic theory by incorporating human
decisions and ABM to model urban development (Krugman 1991, Fujita and Thisse 2002,
Irwin and Bockstael 2002, Cavailhès et al. 2004, Caruso et al. 2007, Munroe 2007, Li and
Liu 2008, Parker and Filatova 2008, Chen et al. 2012). Notwithstanding that these studies
revealed the dynamics of human decisions, they have difficulties in validation using
empirical information. Hence, to overcome the empirical validation issues, some empiri-
cal statistical models gain popularity by specifying the local spatial dynamics. For
example, the discrete choice model uses conditional logit regression equation to predict

Figure 3. Structure of an agent-based model.
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parameters (McFadden 1978, Bruch and Mare 2012). Inspired by the above methods, we
developed an Elastic Net model in this study to extract the rules of the coupled spatial
dynamics and applied them to the spatial units, and afterward we calibrated the
neighborhood effects by using genetic algorithms (GAs)

2.2 Conceptual framework development

The conceptual framework of the spatial dynamic model in this study includes three parts:
the modeling units, the system dynamic (SD) functions, and the essential characteristics of
the modeling units, as shown in Figure 4.

The design of the modeling units faces two challenges. First, the typical large
number of bottom-level entities will take up a large amount of computation time on
hundreds of runs that are required for model testing. Second, the data for individual
entities on human dynamics are often available only in aggregative forms, such as at
the county, census tract, or census block level. In order to build an empirical model
for a relatively large geographic scale such as the LMRB in this study, modeling units
defined in an aggregation form are necessary for the sake of computational loads

Figure 4. Structure of the spatial dynamic model used in this study.
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(Scheffer et al. 1995, Hellweger 2008). For those reasons, the modeling units in this
study are defined as 3 km by 3 km spatially situated cells. In essence, a modeling unit
is a spatial land unit with homogeneous social and economic characteristics, and it is
used as the coherent unit of analysis for modeling the CNH dynamics.

The SD procedure was used to understand the behavior of the modeling units. SD is a
methodology originated by Forrester (1961, 1969) to frame, model, and understand complex
systems. In SD, state variables (dependent variables of the updating functions) are the internal
attributes of a modeling unit, of which the changes are to be updated by the SDs. The
attributes that contribute to the changes of the state variables are called dynamic variables,
which are independent variables in the updating functions. This study utilizes Elastic Net as the
method to derive the SD functions between the state variables and the dynamic variables
using empirical data.

The proposedmodel reflects three principal characteristics of ABMs: autonomy, interaction
ability, and adaptivity. The autonomous characteristic is that a spatial unit is able to control its
internal state. As for the latter two characteristics, the spatial units are able to interact and
communicate with their neighbors, and are able to actively perceive their environment and
react accordingly. The study focuses on the three principles to develop the SDs, but themodel
is different from ABMs, because the spatial units are situated cells and lack mobility.

3. Data and methods

3.1 Data description

All the data used in this study were collected from the following publicly available databases.
Natural hazard damage data were obtained from the ‘Storm Data and the Storm Events
Database’ maintained by National Oceanic & Atmospheric Administration’s (NOAA) National
Climate Data Center. These hazard damage data are aggregated to one of the three spatial
units: counties or zones (a combination of several counties), metropolitan areas, or point
locations with longitudes and latitudes. This study considers five major types of coastal
hazards: coastal (which includes coastal flooding and storm surge), flood, hurricane, thunder-
storm, and tornado. Demographic and socioeconomic data were obtained from the U.S.
Census Bureau. Population count data were obtained at the census block level, whereas the
other social and economic variables were obtained at the census tract level, as many of them
are not available at the census block level. Environmental data, including elevation,water body
locations, and road transportation networks, were obtained from the National Map View
developed by the U.S. Geological Survey. Land cover and land use data were obtained from
the Multi-Resolution Land Characteristics (MRLC) Consortium. Subsidence Rates data were
from the NOAA Technical Report 50: Rates of Vertical Displacement at Benchmarks in the
Lower Mississippi Valley and the Northern Gulf Coast. Energy structure data such as the
location of pipelines and oil/gas wells were from the Louisiana Department of Natural
Resources Oracle database. All the variables derived from these datasets for the model
building are listed in Table 1.
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3.2 Areal interpolation

The data obtained in this study were in different temporal and spatial scales, such as
subsidence data in point form, census data at the block, block-group, or census-tract
scale, and land use and land cover data in pixels. Moreover, the geographic boundaries
of the census data, especially at the block level, changed notably over the study time
span. The study applied areal interpolation methods to incorporate all these data from
heterogeneous sources and units into a unified set of geographic spatial units to make
them spatially and temporally comparable.

The term ‘areal interpolation’was first coined in Goodchild and Lam (1980) to denote the
problem of transforming data defined in one set of areal units (source zones) to another
(target zones), where the two sets of boundaries do not coincide (Lam1980, 1983, 2009). The
target zones for the areal interpolation in this study were the 3 km by 3 kmmodeling units.
The areal interpolation procedure used in this study was an ‘intelligent’ area-weighting
method that has the volume-preserving property (Shu et al. 2010, Cromley et al. 2012). The
developed land cover area was used as an intelligent or ancillary layer, also called a ‘control’
variable. Areal interpolationwith additional control variables is very similar to the principle of
dasymetric mapping, a mapping technique designed to reflect within-zone variations (Lam
1983, 2009).

Ancillary data can substantially improve the accuracy of areal interpolation. Instead of
using the total area of the source zone to derive the weights in area-weighting inter-
polation, the study only considered the developed area under the assumption that only
developed land has the socioeconomic characteristics of interest to population change.
The interpolated value of a given target zone is the areally weighted mean of the values
of the source zones intersected with it, and the weights are determined by the total
areas of these intersected areas on the ancillary layer. This areal interpolation method
was applied only to the variables defined with source-zone boundaries such as the
census variables. For the variables that are originally in raster format such as road
density, zonal aggregation determines the call values. Figure 5 shows the areal inter-
polation process with ancillary data in this study.

In Figure 5, the different tints in the source-zone layer represent the original values of
the variable of interest. The ancillary layer is a binary layer with the shaded area
representing the control variable, which is the developed land cover in this study.
Figure 6 shows the values of the source zones (by census block) before the areal
interpolation and the values of the target zones (defined in 3 km by 3 km grid cells)
after the interpolation. The interpolated pattern resembles closely to the original
pattern.

3.3 Model building

Elastic Net, a new regularization and variable selection method proposed by Zou and
Hastie (2005), was used to select the variables and derive relationships for building the
spatial dynamics model. Elastic Net is a hybrid of the Lasso regression (Tibshirani 1996)
and the Ridge regression (Hoerl and Kennard 1988), both of which add a penalty term
in the fitting function of ordinary linear regression, and the penalty terms are often
referred to as L1 and L2 penalty, respectively. Lasso regression selects variables by

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 693



minimizing multicollinearity, whereas Ridge regression minimizes the overfitting pro-
blem. As a combination, Elastic Net automatically selects the variables to reduce
multicollinearity as the Lasso and keeps a high prediction performance when colli-
nearity exists as the Ridge (Zou and Hastie 2005). The regularization problem of Elastic
Net is defined as minimizing the parameters β0 and βk in Expression 1.

1
2N

XN
i¼1

yi � β0 �
Xm
k¼1

Xkiβk

 !2

þ λ
Xm
k¼1

ð 1� αð Þβ2k þ α j βk jÞ (1)

where N is the number of observations, yi is the value of the dependent variable at
observation i. Xki is the value of the kth independent variable at observation i, λ is a
positive regularization parameter, β0 is an intercept to be estimated, βk is the coefficient
of the kth independent variable to be estimated, m is the number of independent
variables, and α (ranging from 0 to 1) is the parameter that determines if the regression
model is more like a Lasso or a Ridge regression. The Elastic Net is the same as a Lasso
regression when α equals 1. On the contrary, as α shrinks toward zero, the Elastic Net
approaches a Ridge regression. The parameter λ determines the number of independent
variables to be included. As λ increases, the number of nonzero βk decreases, which
means the number of variables selected decreases, and vice versa. Studies have shown
that Elastic Net has an advantage over stepwise regression because it generalizes better
to new samples (Whittingham et al. 2006). Hence, we used Elastic Net in this study to
select variables to develop a simpler utility model.

In this study, population count, developed land area percentage, and utility (defined
later) were the state variables in the SDs. Their temporal changes between 2000 and
2010 were calculated and used as dependent variables in the Elastic Net. The other
variables at 2000 were independent variables (Table 1). In order to eliminate the data
scale impact, all the variables, including their temporal changes, were standardized
before running the Elastic Net.

Figure 5. The areal interpolation method with an ancillary layer.
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We used the derived Elastic Net regression equations as the difference functions to
update the modeling units, with their coefficients divided by 10 (the number of years in
this study) to project the changes of the stock variables for 10 years. Thus, each time
step of running the difference equations in the model represents 1 year. Afterward, a
neighborhood effect term was added to each difference equation to reflect and test the
neighborhood interactivity. We defined the neighborhood as the Moore neighborhood
(the eight contiguous neighbors), and used a GA to calibrate the neighborhood effect
parameters. The fitness function was the total mean squared errors (MSEs) between the
real and the simulated population count and developed land area percentage. By using
this fitness function, we assumed that the simulation accuracies of population count and
developed area percentage are equally important on training the neighborhood impact
parameters. We set the tuning ranges of these parameters from 0 to 1, with a value of 0
indicating no direct neighborhood impacts, whereas a value of 1 implying no autonomy
(in other words, no self-control).

The spatial dynamic model is subject to three additional constraints: (1) if the
population of a spatial unit is below zero, then it cannot receive negative flows to its
population in the next time step; (2) if the developed area percentage of a spatial unit is
over 100%, then it cannot receive positive flows to its developed area percentage in the
next time step; (3) since the historical data show no decrease in developed area, it was
assumed that the developed area percentage cannot have negative flows. If a negative
flow is projected by the difference functions, then it is set to zero.

The study area consists of a total of 5890 modeling units (cells). When building the
Elastic Net, the value of α was set to 0.5 to consider the equal contributions (50%) of L1
and L2 penalties. We used a tenfold cross-validation procedure for iterative calibration
and validation. The procedure divides the whole dataset in 10 portions, 9 of them are
training datasets for calibration and the 10th one is the test dataset for validation. The
cross-validated MSE was used to determine the value of λ and the degree of freedom
(number of predictor variables selected). Due to data availability, this validation proce-
dure was not based on time, but across space (Pontius et al. 2008a, 2008b). A more
robust time-based validation method needs to include data from at least two temporal
periods (e.g. 2000–2010 and 2010–2020).

3.4 Accuracy assessment

The simulated changes during 2000–2010 were compared with the reference (real)
changes in the same period to provide an accuracy assessment of the proposed spatial
dynamic model. We employed the accuracy assessment method developed by Pontius
et al. (2008a, 2008b, 2011) and separated the model error inferred by the total MAD
(MAD_total) into two components: MAD_quantity and MAD_allocation. MAD_quantity is
the absolute difference between the mean real value and the mean simulated value,
whereas MAD_allocation is the difference between MAD_quantity and MAD_total.
Equations (2)–(4) illustrate how MAD_total, MAD_quantity, and MAD_allocation are
derived:

MAD total ¼
Pn

i¼1 yi � ŷij j
n

(2)
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MAD quantity ¼
Pn

i¼1 yi
n

�
Pn

i¼1 ŷi
n

����
���� (3)

MAD allocation ¼ MAD total �MAD quantity (4)

where n is the number of spatial units, yi is the true population count (or developed land
area percentage) of the ith cell, and ŷi is the predicted value of the ith cell. The MAD
values for each comparison (simulated changes vs. reference changes) and for each
variable (population and developed land area percentage) were computed and plotted.
The accuracy assessment results are summarized below in the ‘Results’ section.

3.5 Monte Carlo uncertainty analysis

We applied a Monte Carlo probabilistic uncertainty analysis using simple random sampling
to examine the propagation of uncertainty errors and identify the most important con-
tributors to uncertainty (Doubilet et al. 1985). The uncertainty analysis was conducted on the
simulated patterns for every 10 years from 2010 to 2050. We first standardized the total
values of the three stock variables (population, developed area percentage, and utility) over
all the spatial units into z-scores and used them to assess the uncertainty errors. Second, we
set the endpoints recording the values of the assessment variables (population, developed
area percentage and utility) at the 10th, 20th, 30th, and 40th time step (every 10 years until
the end of the simulations in 2050). Finally, the tuning ranges of the parameters were set
between 50% below their original values to 50% above their original values. After all these
settings, we used the uniform probability distribution for the Monte Carlo simulation to pick
the values for the parameters within their tuning ranges independently for 500 trials. We
then recorded the values of the assessment variables of each spatial unit for each trial at the
endpoints.

4. Results

The Elastic Net method identified 12 socioeconomic variables that were highly correlated
with population change. We combined these variables using their coefficients in the Elastic
Net function into a single variable and termed it as ‘utility’. In essence, utility was a
combination of all the socioeconomic externalities that correlated with population change,
excluding the environmental externalities. As a result, positive utility will trigger population
growth, whereas negative utility will lead to population loss. We used utility as a state
variable in the SDs, and calculated the utility of a spatial unit ij (Utilityij) using Equation (5):

Utilityij ¼ �0:028 � std Pipelineij
� �� 0:0634 � std Roadij

� �þ 0:0745 � std MedValueij
� �

þ 0:0945 � std MedRentij
� �� 0:0059 � std OCST35ij

� �� 0:0140 � std NonMtgij
� �

� 0:0234 � std NonFuelij
� �� 0:0109 � std NonKitchenij

� �þ 0:0243

� std NonPlumbij
� �þ 0:0160 � std NonTeleij

� �� 0:3163 � std NonVehicleij
� �

þ 0:1141 � std Under5ij
� �

(5)
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where the function std() denotes the standardization function. After building the Elastic
Net for all the three stock variables, the neighborhood impact terms (P1, P2, and P3) were
added and calibrated (see below), and the final functions are shown as Equations (6)–(8).

Populationij t þ 1ð Þ ¼ Populationij tð Þ þ 1� P1ð Þ
f3 � Populationij tð Þ þ e3 � Developedij tð Þ þ a3 � Damagesij
þb3 � Elevationij þ g3 �Waterij tð Þ þ d3 � Utilityij tð Þ

� �

þ P1
1
8

X8
Nk¼1

f3 � Populationk tð Þ þ e3 � Developedk tð Þ þ a3 � Damagesk
þb3 � Elevationk þ g3 �Waterk tð Þ þ d3 � Utilityk tð Þ

� � ! (6)

Developedijðt þ 1Þ ¼ DevelopedijðtÞ þ ð1� P2Þðf2 � PopulationijðtÞ þ e2�
DevelopedijðtÞ þ g2 �WaterijðtÞ þ d2utilityijðtÞÞ þ

P2
1
8

X8

NK¼1
ðf2 � PopulationkðtÞ þ e2 � DevelopedkðtÞ þ g2 �WaterkðtÞ þ d2 � utilitykðtÞÞ

� � (7)

Utilityij t þ 1ð Þ ¼ Utilityij tð Þ
þ 1� P3ð Þ f1 � Populationij tð Þ þ a1 � Damagesij þ b1 � Elevationij þ c1 � Subsidenceij þ d1 � Utilityij tð Þ

� �
þ P3

1
8

X8
Nk¼1

f1 � Populationk tð Þ þ a1 � Damagesk þ b1 � Elevationk þ c1 � Subsidencek þ d1 � Utilityk tð Þð Þ
 !

(8)

where subscript ij refers to a spatial unit in row i and column j, tdenotes a certain timepoint,
kdenotes the kth neighbor of the spatial unit ij, and thedescriptionof all the variable acronyms
is listed in Table 1. Table 2 lists the basic descriptive statistics of the original values of the three
stock variables, the four environmental variables, and the 12 socioeconomic variables at 2000
(tabulated from the 3 km by 3 km grids). Figure 7 plots the SDs identified from the Elastic Net
equations.

The neighborhood parameters P1, P2 and P3(also referred as the second set of para-
meters) were calibrated by a GA, whereas the other parameters in Equations (6)–(8) (the
first set of parameters) were derived from Elastic Net. The reasons for not using GAs to
calibrate the first set of parameters are fourfold. First, the first set of parameters were

Table 2. Descriptive statistics of the variables (in 2000) used in the system dynamicsmodel (tabulated from
the 3 km by 3 km grids).
Variable Minimum Maximum Mean Standard Deviation

Utility −2.89 1.03 0.00 0.22
Population 0.00 38,334.36 385.75 1862.52
Developed 0.00 100 0.058 0.14
Damage 0.00 999,000,000.00 9,887,979.00 39,880,882.00
Elevation −2.23 112.45 8.93 19.87
Subsidence −0.02 0.00 −0.01 0.00
Water 0.00 1.00 0.33 0.39
Pipeline 0.00 13.21 0.52 0.78
Road 0.00 0.02 0.00 0.00
MedValue 0.00 426,314.90 40,571.19 46,649.48
MedRent 0.00 1448.38 192.32 215.24
OCST35 0.00 0.36 0.07 0.08
NonMtg 0.00 0.77 0.23 0.25
NonFuel 0.00 0.08 0.00 0.00
NonKitchen 0.00 0.03 0.00 0.01
NonPlumb 0.00 0.04 0.00 0.01
NonTele 0.00 0.19 0.03 0.04
NonVehicle 0.00 0.49 0.04 0.06
Under5 0.00 0.11 0.03 0.04
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already empirically estimated by Elastic Net using the real data. Second, the definition of
the utility was derived by Elastic Net, and tuning the first set of parameters will cause the
linear combination of the socioeconomic variables represented by the utility no longer be
the best predictors for population change. Third, although evolutionary algorithms such as
GAs can reduce the computational time of running the model considerably in contrast
with exhaustive methods, the number of iterations required to find a solution in GAs with
many parameters could be enormous (Wright and Alajmi 2005). Thus, testing the con-
vergence with fewer parameters is easier and often preferred. Last, GAs need tuning
ranges of the parameters to identify their searching spaces for solutions, and unlike the
second set of parameters which has a logical tuning range (from 0 to 1), the first set of
parameters does not have tuning ranges. Applying GAs by creating tuning ranges from
empirically identified values by another data mining method (such as Elastic Net in this
study) would be redundant and trivial.

In applying the GA algorithm, we set the initial population to 100 chromosomes (i.e.
P1, P2, P3) and the crossover rate and the mutant rate to 10%. In each iteration, 25% of
the population of the current generation were the winners selected from the last
generation, and the rest 75% were created by applying crossover and mutant operators
on these 25% winners. One hundred iterations were generated, and at each iteration we
documented the best chromosome (solution) to study the convergence. The results of
the GA are shown in Figure 8.

In Figure 8, the gray line represents the MSE of each iteration, whereas the thick black
line represents the best chromosome (feasible solution) of each iteration. To sum up, we
found that the best solution is where the contribution percentages of neighborhood
impacts were 0% for population change (P1 = 0), 50% for developed land area change
(P2 = 0.5), and 0% for utility change (P3 = 0). This means that the best simulation
accuracy was achieved when there were no direct neighborhood impacts from the
utility change and the population change, but half neighborhood impacts from the
developed land area percentage change. Figure 9 compares the real population and
developed land area of the study area at 2000, the real population and developed land
area at 2010, and the simulated population and developed area at 2010, using both
calibration and validation data.

Following the procedure described in Pontius et al. (2008a), we created two sets of
plots for the two variables of population and developed land using both calibration and
validation data (Figure 10). The variable ‘utility’ was not compared in this analysis
because it is a derived variable from a combination of variables and is not directly

Figure 8. Genetic algorithm results for calibrating the neighborhood impacts.

700 K. LI AND N. S. N. LAM



observable. For the variable of population, the first plot (Figure 10(a)) displays the real
population at 2010 on the x-axis versus the simulated population at 2010 on the y-axis,
and the second plot (Figure 10(b)) displays the real population at 2010 on the x-axis
versus the real population at 2000 on the y-axis. The first plot shows how closely the
model simulates the population at 2010, with the x = y line indicating complete
agreement between x and y values. The second plot shows how much the population
changed actually between 2000 and 2010, with the x = y line indicating no changes
between the two time points. Therefore, we used the second plot as a persistence model
for comparison.

Table 3 lists the MAD_total, MAD_quantity, MAD_allocation, and the mean values of
the x and y axes (Pontius 2008a). According to Table 3 and Figure 10 (subplots (a) and
(c)), we found that the model on average slightly overpredicts population and devel-
oped land area. For the population variable, the MAD_total of the simulated results is
smaller than that of the persistence model (Table 3 comparing (a) and (b), 94 < 199);
therefore, the simulation model undoubtedly has a higher accuracy than the persistence

Figure 9. Comparison between the real patterns at 2000 and 2010 and the simulated results at 2010
for population and land area percentage (using both calibration and validation data).
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model. When comparing the two components of MAD_total, the results show that the
MAD_quantity is much lower than the MAD_allocation (3 vs. 91) for the simulation
model, and both are much lower than those of the persistence model. In like manner,
the same pattern is true for the variable of developed land, except that the simulated
result is less accurate than that of the persistence model in terms of MAD_allocation (25
vs. 9). For the developed land area variable, although the simulation model has a higher
accuracy than the persistence model in terms of quantity, its accuracy in terms of
allocation is lower. Furthermore, a close visual comparison between the simulated and
real population maps at 2010 (Figure 9) shows that there are more discrepancies
between the real and the simulated patterns for the population variable than for the
developed land area variable. We found the most notable discrepancies in the New

Figure 10. Subplots (a) and (c) compare the simulated and the real results at 2010 for population and
developed land area; subplots (b) and (d) compare the real population between 2000 and 2010 (persistence
model). All subplots are based on both calibration and validation data. See text for more explanation.

Table 3. Accuracy assessment of the simulation model (5,890 modeling units).
Subplots of Figure 10 Mean X Mean Y MAD_-total MAD_quantity MAD_allocation

(a) 398 401 94 3 91
(b) 398 386 199 12 187
(c) 602 604 26 2 24
(d) 602 576 35 26 9
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Orleans region where Hurricane Katrina (in 2005) had caused a dramatic decline in
population and urban development during the study period.

We created histograms of all the 500 trials from the uncertainty analysis for the three
assessment variables (population, developed land area, utility). All the histograms used
50 equal-size bins, and their center values of the bins are plotted in Figure 11. The
probability distributions of the simulated total population and the simulated total
developed land area percentage are one-tailed to the right. The reason for this phenom-
enon is the constraints added in the simulation settings. In contrast, the probability
distribution of the simulated total utility is more like two-tailed. The propagated uncer-
tainty errors represented by the probability distributions of the total population and
total developed land area percentage (in z-scores) increased almost linearly over the
simulation time. For the total utility, the uncertainty increased dramatically from the first
endpoint to the second (2020–2030), after that, the increasing speed was also almost
linear over the simulation time.

We calculated the Pearson’s correlation coefficients between the assessment variables
and the parameters to reveal the approximate relative contribution of each parameter to
the variance of each assessment variables. The parameters having the greatest effects
are considered to be the parameters with the highest correlation coefficients, and they
are summarized in Table 4.

5. Discussion

Results from this study indicate that the proposed modeling approach is feasible and
can be extended to investigate the long-term population dynamics in a vulnerable
coastal region. However, we note several limitations and future improvements of the
model. First, in terms of the CNH dynamics, this study mainly focused on changes of the
system due to the human component. The dynamics of the three environmental vari-
ables, such as elevation, subsidence rate, and land loss rate (open water percentage
change), were not updated in the simulation because reliable time-series data and their
driving forces on some of the variables (such as subsidence rate) were not available.
Nevertheless, the same modeling methodology can be used to uncover the dynamics of
these natural variables when their driving factors have been empirically and scientifically
identified (e.g. accretion rate, biomass diversity, land building process). In this study,
only the developed land use area percentage was modeled. Other types of land cover
(e.g. land to water) can also be simulated. Adding more dynamics of the natural part in

Table 4. Pearson correlations between the stock variables and selected parameters.

Assessment variable Parametera
Pearson correlation coefficient

Year 2020 Year 2030 Year 2040 Year 2050

Total Population e3 0.78 0.77 0.77 0.76
f3 0.47 0.50 0.52 0.54

Total Developed
Area Percentage

d2 0.41 0.36 0.32 0.30
e2 0.76 0.80 0.83 0.85

Total Utility f1 0.68 0.61 0.58 0.57
e3 0.52 0.56 0.57 0.57
f3 0.32 0.37 0.39 0.40

aThe parameter symbols are the same as used in Equations (3)–(5).
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the model will make the model more comprehensive and help increase our knowledge
of the complex CNH dynamics in this coastal region.

Second, we chose Elastic Net to extract the relations among the variables. This ‘white-
box’ data mining approach is preferred whenever possible to reveal the structure and
relationships of the natural–human system and extract the rules for building the system
dynamics. But as has been noted, we built the Elastic Net using a space-for-time
substitution for generating sample data points. Thus, it was assumed that the depen-
dency of a dependent variable on each independent variable is the same among all the
spatial units. For this reason, the model could be improved by avoiding the imposition
of this underlying space-for-time assumption, but this needs more data for each spatial
unit, which means that there should be several temporal data points for each variable in
each spatial unit.

Third, results from the GA demonstrate the existence of neighborhood effects to
some extent in the final calibrated model. In building such a ‘bottom-up’ model,
parameters setting is an important task. We used the GA as a calibration procedure
because it led to quick convergence on tuning the parameters. However, the final
calibrated parameters are somewhat confined, leading to no direct neighborhood
effects on population and utility (P1 = 0 and P3 = 0). Furthermore, as in any evolutional
optimization algorithm, there is no guarantee that the final solution is a global optimum.
To alleviate this uncertainty, it is possible to test and experiment with different sets of
starting values and compare the results. Although there is still no guarantee that a
global optimum can be reached, we should revisit this calibration part in future research.
In addition, different neighborhood sizes could be tested.

Fourth, we lack information from a third time point due to data availability, hence we
could not separate calibration data from validation across time, and as a result we have
no measurement of how well the performance of the model predicts through time.
Consequently, we applied a substitutional method of validating the data across space,
thus the goodness of fit of the developed model only reflects how well the model
simulates across space within a short 10-year period. In future studies, with more data
collected at different time points, we could validate and increase the prediction accuracy
of the model through time.

Fifth, more information on the bottom-up decision-making process, such as those empiri-
cally derived from household surveys of people’s perception of risk andmigration factors, will
help us refine the utility variable and increase the accuracy of the model. Sixth, stochastic
elements could be included in the model to account for the unknowns or imperfect knowl-
edge that typically exist in complex system modeling. Seventh, all the relationships were
calibrated globally without considering spatial nonstationary, future studies could test and
quantify local relationships to improve the prediction accuracy. Finally, as in any spatial
modeling, scale is a critical issue that can affect the analysis results (Lam and Quattrochi
1992, Lam2012). Amultiscale analysis in the futurewill reduce the uncertainties of the findings
and advance our knowledge of complex SDs in the region.

6. Conclusion

In closing, this study developed a spatial dynamic model to simulate changes in population
and developed land area in the LMRB, a coastal region highly vulnerable to sea-level rise
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and coastal hazards. Using Elastic Net and GAs, 12 socioeconomic and four environmental
variables were extracted from 33 variables to build the SD model. Results show that the
model on average outstands the persistence model, despite slightly overpredicting both
population and developed area. The MAD_quantity values confirm that the model has
higher accuracy than the persistence model. However, the model did not perform well in
terms of MAD_allocation, with most outliers occurred in the New Orleans region where
Hurricane Katrina had led to a dramatic decline in population and urban development
during the study period.

Findings from this study have several significant implications. First, the study provides
important empirical baseline information on the study region regarding population dynamics
and the impact variables. The 12 variables extracted to represent utility could further be
evaluated and compared with the resilience literature in follow-up studies. Second, from the
modeling perspective, the uniqueness of modeling coastal vulnerability and population
dynamics is that it typically requires a host of natural and human factors, and the data come
in diverse forms and have different inherent properties. This study demonstrates howdifferent
methods can be combined to develop a CNH dynamic model with a feedback mechanism to
examine a compelling societal problem. Third, the model developed in this research focuses
on uncovering the social and economic emergent properties in a vulnerable coastal region,
which arises from ‘bottom-up’ interactions in a complex systemandnot from theexistenceof a
‘top-down’ central controller or a planning initiative. The model can be used to monitor the
existence of such emergences due to its ability of continuously updating the values of the
variables. Fourth, themodel offers a foundation to compare the different emergent properties
between the northern (more inland) part and the southern (more coastal) part of the study
region. By utilizing the simulated results, different impact levels of the extracted variables on
the more-coastal and more-inland areas can be analyzed in follow-up studies.
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