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Abstract: Human mobility influenced the spread of the COVID-19 virus, as revealed by the high
spatiotemporal granularity location service data gathered from smart devices. We conducted time
series clustering analysis to delineate the relationships between human mobility patterns (HMPs)
and their social determinants in California (CA) using aggregated smart device tracking data from
SafeGraph. We first identified four types of temporal patterns for five human mobility indicator
changes by applying dynamic-time-warping self-organizing map clustering methods. We then
performed an analysis of variance and linear discriminant analysis on the HMPs with 17 social,
economic, and demographic variables. Asians, children under five, adults over 65, and individuals
living below the poverty line were found to be among the top contributors to the HMPs, including
the HMP with a significant increase in the median home dwelling time and the HMP with emerging
weekly patterns in full-time and part-time work devices. Our findings show that the CA shelter-
in-place policy had varying impacts on HMPs, with socially disadvantaged places showing less
compliance. The HMPs may help practitioners to anticipate the efficacy of non-pharmaceutical
interventions on cases and deaths in pandemics.

Keywords: COVID-19; social mobility patterns; socioeconomic and demographic characteristics;
smart device tracking; California

1. Introduction

The 2019 novel Corona Virus (COVID-19) spread is an ongoing global public health
emergency and has caused a profound impact on medical services around the world.
Many health systems have had to quickly adapt to new technologies and procedures to
better diagnose and treat patients [1–4]. Non-pharmaceutical actions, such as physical
distancing and sheltering-in-place, were regarded as critical and implemented by many gov-
ernments, especially when vaccines or therapeutics were not available. Precise anonymized
location data collected from geographic location services provided a useful method to
reveal human mobility at its finest granularity and frequency and to study the efficacies of
non-pharmaceutical interventions enforced by national or local governments. Therefore,
many aggregated human mobility datasets are derived and used in such efforts due to
advances in, nowadays, geographic location services. Buckee et al. [5] highlighted how
those aggregated mobility datasets can help fight the spread of COVID-19 and shed light
on understanding the effectiveness of large-scale governmental social distancing public
interventions. Many recent studies, with the help of using aggregated human mobility
indicators from various datasets, demonstrated the effects of actions on reducing mobility
as either containing the spread or mitigating the impacts of COVID-19. Kraemer et al. [6]
calculated mobility statistics using Baidu’s real-time travel data and found that the restric-
tions on mobility implemented in China successfully contained the spread and reduced the
local transmission of COVID-19 among the cities of China at the start of 2020. Gatto et al. [7]

Appl. Sci. 2023, 13, 2440. https://doi.org/10.3390/app13042440 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042440
https://doi.org/10.3390/app13042440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4641-6699
https://orcid.org/0000-0003-1540-9805
https://orcid.org/0000-0001-5969-0729
https://doi.org/10.3390/app13042440
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042440?type=check_update&version=1


Appl. Sci. 2023, 13, 2440 2 of 15

reported that “the sequence of restrictions imposed on mobility and human-to-human
interactions reduced transmission by 45%” (42–49% confidence interval) from 21 February
to 25 March 2020, in Italy, by running a susceptible-exposed-infected-recovered (SEIR)
transmission model under various simulation scenarios. Vokó and Pitter [8] identified the
changing points of the country-specific social distance index curves in 28 European coun-
tries and showed how COVID-19 growth rates were reduced by increasing social distancing
quartiles after those change points. Similarly, Sulyok and Walker [9] used Google’s aggre-
gated county-based community mobility reports (CMR) and found noticeably negative
correlations between CMR mobility changes and COVID-19 case incidence for prominent
industrialized countries in Western Europe and North America. Hadjidemetriou et al. [10]
showed that human mobility in the United Kingdom gradually decreased as lockdown
measures were announced and stabilized at around 80% after lockdowns were imposed;
initial control measures aiming at human mobility reduction had a direct impact on the
number of COVID-19 related deaths in the UK through the use of Apple’s mobility trend
reports based on requests for directions in Apple Map services categorized by walking
and driving.

While leveraging the power of human mobility datasets in investigating the spread
and impacts of COVID-19, researchers also noted the luxury nature of those multi-source
mobility datasets (e.g., SafeGraph) and the high spatial and temporal variations of their
variables. [11] For example, The U.S. Centers for Disease Control and Prevention (CDC) [12]
reported different temporal trends of social mobility in New Orleans, LA, New York City,
NY, San Francisco, CA, and Seattle, WA, following the imposition of stay-at-home orders in
these cities from 26 February to 1 April 2020 using aggregated GPS data from the SafeGraph.
Moreover, Hou et al. [13] claimed that such spatial heterogeneities of social distancing
might even exist within a county in their work on utilizing the location-based metrics
of foot traffic to businesses and consumer points of interest provided by SafeGraph to
augment a stochastic SEIR model. Those factors of high spatial and temporal variations
reflect how the temporal patterns of a human mobility variable are more detailed and,
as such, more appropriate to describe human mobility changes in comparison with the
summary statistics (i.e., means). Thus, more advanced methods than calculating the mean
values of the variable are needed to discover the human mobility pattern (HMP) in an
aggregated form of a certain region. Huang et al. [14] pioneered a work using a K-means
time series clustering algorithm to distinguish different HMPs at the census block groups
level using the variable of the median home dwelling time provided by SafeGraph. The
three types of HMPs identified via their methods in the Metropolitan Atlanta area affirmed
substantial intra-county spatial heterogeneities and pointed to the existence of extensive
gaps in the effectiveness of social distancing measures between socially disadvantaged
groups and others. Similar studies focused on the HMPs of other mobility variables as
traveled distances and visitation rates, and also confirmed that the speed, depth, and
duration of social distancing in the United States were heterogeneous [15].

Efforts to socially distance may be more burdensome for some socially disadvantaged
communities than others, which would potentially exacerbate disparities in COVID-19-
related health outcomes. Researchers, with the help of SafeGraph data, found that indi-
viduals in high-income neighborhoods increased their days at home substantially more
than individuals in low-income neighborhoods and that residents of low-income neighbor-
hoods were more likely to work outside the home compared to residents in higher-income
neighborhoods [16]. These findings point out the fact that lower-income people have faced
barriers in complying with state physical distancing policies. However, these analyses
were based on the national average HMPs of people within different income quintiles
and ignored both the geographical variations inside those income quantile groups and the
impacts from other social, economic, and demographic (SED) variables. In addition, sev-
eral studies have found correlations between compliance with human mobility restriction
orders and several social characteristics of local populations. Chiou et al. [17], for example,
found that the combination of “having both high income and high-speed Internet appears
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to be the biggest driver of propensity to stay at home” using data that tracks 20 million
mobile devices and their movements during the first few months of the early pandemic.
Huang et al. [18] concluded that the lower compliance with stay-at-home orders among
low-income groups in the 12 most populated metropolitan statistical areas in the United
States was likely due to the fact that these groups could not afford to comply with such
orders. This research inspired us to develop intelligent HMP discovering methods to study
these SED inequalities at finer geographical scales because they are likely to amplify exist-
ing health disparities and must be addressed to ensure the success of ongoing pandemic
mitigation efforts.

In this study, we used a dynamic-time-warping self-organizing map (DTW-SOM)
clustering algorithm to classify the HMPs in CA census block groups, which has been
well tested in clustering time series with asynchronous patterns [19]. We would like to
address and solve this asynchronous pattern issue using DTW-SOM, as it allows for small
tolerance on time shifting for HMPs. For example, some places might be faster in response
to the shelter-in-place orders by a few days than others [11], but if their HMPs are similar
in shape, we would assume that these places had similar compliance with orders. We
noted that different human mobility variables might present unique and even contrasting
characteristics. Thus, we ran the DTW-SOM on five different human mobility variables from
SafeGraph to identify the HMPs of each variable and to reveal the multifaceted nature of
human mobility. Since the identified HMPs reflect individual behaviors under government
orders and personal perspectives of disease prevalence and their choice or ability to comply
with stay-at-home orders, we next further investigated their associations with SED status
and inequities. A recent study quantitatively evaluated the impact of human mobility on
the spread of COVID-19 from a spatiotemporal perspective using geographically weighted
regression and revealed the spatiotemporal-varying quantitative relationships between
COVID-19 transmission and human mobility [20]. However, disparities in human mobility
are the results of SED determinants, but fewer evaluated the quantitative relationships
between human mobility and SED status. In many existing qualitative studies, SED
variables were used to stratify the population and to compare the average human mobility
of each stratification [16]. To overcome such challenges, we first collected 17 SED variables
from the 2014–2018 American Community Survey to explain HMPs, then performed the
analysis of variance (ANOVA) to examine whether the SED differences among HMP
groups were statistically significant, and lastly, performed linear discriminant analysis
(LDA) on the HMP groups to examine the quantitatively discriminating ability of 17 SED
variables by their potency indices. To eliminate the impacts from confounders, such as the
different contents of social distancing orders by different local governments under different
pandemic reaction stages, we focused our study on the early pandemic period of California
until 2 October 2020, when a new shelter-in-place order was released and enforced.

2. Materials and Methods

We selected five human mobility indicators derived by SafeGraph: (1) median home-
dwelling time; (2) the percentage of completely stay-at-home devices; (3) the percentage of
frequently moving devices as would happen when, for example, making deliveries; (4) the
percentage of stationary part-time (work) devices at locations other than at home; and
(5) the percentage of stationary full-time (work) devices at locations other than home. They
were calculated based on an aggregated anonymous mobile device by SafeGraph, which
aggregated physical locations of non-identifiable individuals collected from third-party
entities under licenses that complied with evolving laws regarding privacy to the census
block group (CBG) level (Table 1). SafeGraph used the typical nighttime (i.e., from 6 p.m. in
the evening to 7 a.m. the next morning) location over a 6-week period to assign “homes” to
each of the participating devices. The initial assignments were made for squares measuring
approximately 153 m on a side and then census block groups containing these squares. The
daily median home dwelling time was calculated as the median number of minutes at home
on a given day across all devices located in a given census block group. The percentage of



Appl. Sci. 2023, 13, 2440 4 of 15

devices completely staying at home was calculated by dividing the number of devices that
did not leave their home squares located in a CBG with the number of devices seen during
the same date range whose home was in that CBG. The full- and part-time work behavior
devices were those that spent > 6 h and 3–6 h in places other than the designated “home”
location from 8 a.m. to 6 p.m. each day. The mobile (delivery) behavior devices stopped for
< 20 min at > 3 locations per day in some place other than the designated “home” location.

Table 1. Social, economic, and demographic variables selected from the 2014–2018 American
Community Survey.

Acronym Description

pnoINS Percentage of the civilian non-institutionalized population with no health insurance coverage.

pmovOCP Percentage of the civilian employed population working in production, transportation, and material moving
occupations.

pservOCP Percentage of the civilian employed population working in service occupations (e.g., health care support or
other protective service occupations).

pPOVERTY Percentage of households with median household incomes below the federal poverty threshold.
medINC Median household income in the past 12 months (in 2016 inflation-adjusted dollars).
medHSV Median value of owner-occupied housing units (in 2016 inflation-adjusted dollars).
pmHIGH Percentage of males 25 years and older with high school graduation or equivalent.
pfHIGH Percentage of females 25 years and older with high school graduation or equivalent.

pWOUTCO Percentage of workers 16 years and older working outside their county of residence.
pWAH Percentage of workers 16 years and older working from home.

pBLACK Percentage of the population classified as Black or African American.
pASIAN Percentage of the population classified as Asian.

pHISPAN Percentage of the population classified as Hispanic.
pFEMALE Percentage of the population classified as female.
pUNDER5 Percentage of the population under 5 years.

pmOVER65 Percentage of the male population 65 years or older.
pfOVER65 Percentage of the female population 65 years or older.

We obtained these 5 indicators from 1 January 2019 to 3 October 2020 for the whole
U.S. and extracted the devices located in CA for further analysis. The reason for choosing
CA as our study location was due to the severe impact that the COVID-19 pandemic had
on this area. This included state-implemented measures, such as lockdowns and gathering
restrictions, to control the spread of the virus and to address the evolving situation. We
excluded the census block groups (CBGs) in census tracts with “98” prefixes, which marked
places of a large area with few or no residents, such as large parks or employment areas, and
“99”, which denotes large bodies of water. The final dataset included 23,142 census block
groups, and the daily numbers of tracked mobile devices ranged from 1.74–2.58 million
in 2019 to 1.37–1.93 million in 2020. Given the total number of 39.78 million residents,
based on the 2020 U.S. Census, these metrics meant that we were able to track 4.5–6.5% and
3.5–5% of the total population in California in 2019 and 2020, respectively. To avoid the
seasonality of human mobility caused by climatic drivers, school terms, religious festivals,
and national holidays [21], we subtracted the daily values of 2020 from the five variables
by their daily values in 2019 so that a positive value would mean an increase in the variable
and vice versa. To match the day of the week, we calculated the changes in these five
metrics by subtracting their daily values in 2020 from the daily values in 2019 using a
1-day lag before 29 February 2020 and a 2-day lag thereafter (since 2020 was a leap year).
This approach meant that we could compare similar days across the two years. This was
important because the human mobility metrics reveal strong weekly patterns. For example,
median home dwelling times regularly peaked on weekends. As a consequence, the HMPs
represented the 2019–2020 patterns of changes of the five metrics.

We used time-series clustering methods to characterize temporal mobility patterns
across geographic units [22]. We were able to produce HMP groups that were less sensitive
to outliers and with lower clustering errors in our preliminary analyses using DTW-SOM: a
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self-organizing map clustering algorithm variant previously developed by our research
group [19,21]. A self-organizing map is a type of unsupervised neural network with
only two fully connected layers: an input layer and an output or mapping layer. This
approach provides a competitive learning neural network since the weights in it have
different meanings than in standard neural networks. Each weight on a connection in SOM
represents the similarity between the connected mapping neuron and the input neuron.
The SOM transforms the input space into a lower, typically two-dimensional gridded space
that is effective for visualizing and exploring the properties of the input data. This method
has been widely applied in time-series clustering [23,24]. In our dynamic time-warping
DTW-SOM method, the similarity measure (i.e., DTW) optimally aligns interior patterns in
the sequential data, both as the similarity measure and training guide of the neural network.
DTW-SOM produces lower clustering errors and higher purity within each output neuron,
especially when applied to time series input data than standard self-organizing maps.

We ran DTW-SOM on clustering each one of the 5 human mobility indicators using
initial weights for the neurons calculated by principal component analysis (PCA) with
a learning rate of 0.5. We chose 4 as the number of groups for each mobility indicator
to balance the trade-off between clustering errors and interpretability. We monitored the
clustering quantization errors of the output space and stopped the training progress when
the errors converged (<0.001). At the end of the training of each mobility metric, DTW-
SOM assigned the CBGs to one of the four neurons, whose weights represent HMPs of
that mobility metric. For ease of later reference, we denoted the groups generated by
(1) the median home-dwelling time as time-HMP-groups; (2) the percentage of completely
stay-at-home devices as home-HMP-groups; (3) the percentage of delivery (work) devices
as delivery-HMP-groups; (4) the percentage of part-time (work) devices as part-HMP-
groups; and (5) the percentage of full-time (work) devices as full-HMP-groups. We also
named the four groups under each metric using the order of their group means so that
time-HMP-group one denoted the group with the smallest mean, which was generated by
applying DTW-SOM on the median home-dwelling time variable and, similarly, time-HMP
4 represented the HMP (cluster center) of the time-HMP-group 4, which had the largest
mean under the same metric. This nomenclature would allow us to more easily refer to
various groups generated by different human mobility metrics and explain our hypothesis
that HMPs offer fine-grained mobility profiles and, therefore, are superior to mean values
in investigating the complex relations between human mobility and other socioeconomic
and demographic factors.

We downloaded 17 social, economic, and demographic variables for all CBGs in
California from the 2014 to 2018 American Community Survey (Table 1).

For each mobility indicator, we related the HMPs discovered by DTW-SOM to the
17 SED factors using two complementary approaches: one univariate and one multivariate.
In the univariate approach, we used one-way ANOVA to quantify the variation in each
SED factor across the 4 HMP groups. In the multivariate approach, we assigned the 4 HMP
groups for each human mobility indicator into two groups, consisting of one group that
had a typical HMP of interest versus the other group that did not, due to the following
reasons: (1) The 4 HMPs of each mobility indicator discovered by DTW-SOM were not all
equally representative. Some of them were much less populated than others (i.e., group
2 in the delivery behavior HMP groups only had 569 CBGs whereas the largest group 1
had 14,650 block groups); (2) Meanwhile, it would be very tedious to discriminate the
differences between each two out of the groups. Thus, we decided to focus on the typical
HMPs that we had the most interest in and dichotomized the groups according to whether
they had that kind of HMP or not. For example, we had two groups that were derived based
on the DTW-SOM results of the full-time work mobility indicator. One group contained
CBGs showing an HMP of strong weekly patterns with periodic peaks during weekends,
whereas the other one consisted of CBGs that did not show such an HMP. The detailed
dichotomization schema is listed below:
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• Full-time work behavior HMP groups (group 1 vs. others): HMP in group 1 showed
lower values in 2020 than in 2019 (negative changes indicated by the centroid curve
below the zero-baseline all the time), and the most apparent sharp decline took place
right after the pandemic period started. Most importantly, strong weekly patterns with
periodic peaks during weekends started to emerge with this HMP after the pandemic
period started. We decided to group other HMP groups together because they ed no
such HMP (group 2 showed a vaguely similar HMP but looked more closed compared
to the rest of the groups), and we were interested to see what other SED variables
contributed to the emergence of weekly patterns in such HMP.

• Part-time work behavior HMP groups (group 1 vs. others): The dichotomization
schema and HMP profiles here were similar to what we conducted for full-time work
behavior groups.

• Completely stay-at-home HMP groups (group 3, 4 vs. group 1, 2): HMPs in groups 3
and 4 here both have an obvious asymmetry peak pattern (even though at different
levels), which increased at the beginning of the pandemic period and gradually
decreased moving forward. In comparison, the other groups had either no or very
modest HMP throughout the whole period.

• Home dwelling time HMP groups (group 3, 4 vs. group 1, 2): The dichotomization
schema and HMP profiles here followed what we conducted for completely stay-at-
home groups.

We then ran LDA to find the linear combinations of the SED factors that separated the
two groups. The direction and magnitude of the LDA coefficients could be used to identify
the factors that contribute the most, either positively or negatively, to distinguishing the
two groups. While dichotomizing the HMP groups, we arbitrarily assigned 1 to the group
with HMPs of interest and 0 to the other group since all the HMPs of interest indicated the
tendency of the residents to stay at home longer, so that the LDA coefficients would always
be positively correlated with the political compliance to the shelter-in-place order.

3. Results
3.1. HMPs of the 5 Human Mobility Indicators

We applied DTW-SOM on all five indicators independently using an output space
of four neurons and identified four types of HMPs for each indicator using the cluster
centers of the four groups (Figures 1 and S1–S4). The California statewide median home
dwelling times recorded with the white line in the top subplot of Figure 1 from 1 January
to 13 March in 2020 are similar to those in 2019 (but for a small misalignment to match
the day of the week and minimize the impacts from the observed variability in weekly
patterns). However, during the period from 13 March 2020, when the national emergency
state started, to 15 June 2020, when the CA statewide shelter-in-place order ended, we
observed a sharp rise that gradually disappeared after 23 May 2020, when thousands of
people protested against the shelter-in-place order in California. From 15 June to 2 October
2020, when California issued a new shelter-in-place order, we saw a modest increase in
home-dwelling time relative to the same period in 2019. We also saw that a sharp decrease
occurred prior to 19 March 2020, when California issued the first statewide shelter-in-place
order, as residents performed more out-of-home activities to prepare to stay at home.

The above statewide mean value curve informs us of a lot of temporal details concern-
ing public responses and political compliance to the CA shelter-in-place order, however
with such a highly populated and geographically versatile state as CA, we would ex-
pect more spatial variations of HMPs to be discovered, and the four subplots underneath
Figure 1 showed the results of the four time-HMP-groups that were affirmed by our expec-
tations. A large amount of CBGs, accounting for 15.2% of all the investigated CA CBGs in
the time-HMP-group, 1 did not show any significant median home dwelling time increase
with their cluster centroid line quite close to and slightly underneath the zero-baseline all
the time. CBGs in time-HMP-group 2 featured fewer hours spent at home in early 2020
by having constant negative values before 13 March; however, these CBGs increased their
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hours at home rapidly after the shelter-in-place order. CBGs in time-HMP-group 3 and 4
spent similar amounts of time in hours at home in early 2020 before mid-March compared
with the previous year and presented similar time-HMPs to the statewide time-HMP;
thereafter, we still observed compelling differences among them. For example, time-HMP
4 still maintained momentous positive changes even after 15 June, but the positive changes
disappeared in time-HMP 3 after 15 June. Moreover, the peak from 13 March to 15 June
of time-HMP 3 is much closer to the peak of the statewide time-HMP and more moderate
than the peak of time-HMP 4. The four types of time-HMPs informed us that only 43.9%
CBGs (in group 3) had a similar time-HMP to the whole state, whereas over half of the
CBGs in the state could not be described by the statewide time-HMP. Thus, using statewide
time-HMP to describe all the CBGs could dismiss the facts that over 15% of CBGs did not
change their median home dwelling times at all and over 40% of CBGs (time-HMP-group 2
and 4) experienced a momentous increase in their median home dwelling times after the
end of the first shelter-in-place policy.
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Similar geographical variations in HMPs were perceived on the other human mobility
indicators as well. The percentage of completely stay-at-home devices is a human mobility
indicator that is more correlated with the indicator of the median home dwelling time but
potentially more relevant to the population in isolation or quarantine due to COVID-19,
and we conducted similar clustering approaches on it. Its statewide home HMP showed
a similar peak pattern but stayed below the zero-baseline before the national emergency
started. Home-HMP 1, 3, and 4 showed that further different CBGs might have different
levels of peaks. Although 17.6% of CBGs in group 4 showed a strong peak, the majority
(31.8%) of CBGs in home-HMP-group 1 and 47.4% CBGs in home-HMP-group 3 did not
respond as much. Meanwhile, a negligible portion of 3.2% CBGs in home-HMP-group
2 behaved completely differently than others, with the home-HMP 2 fluctuating fiercely
around the zero-baseline (Figure S1). With these clustering results, we concluded that
the population completely staying at home elevated significantly by over 96% CBGs (in
home-HMP-group 1, 3, and 4) after the order, even though from a baseline much lower than
the previous year was observed. Compared with the elevation in home-dwelling times
observed in only around 85% of CBGs (in time-HMP-group 2, 3, and 4) after the order, we
could claim stronger political compliance to the order by using the completely staying-
at-home metric than the home-dwelling time metric. Moreover, unlike the momentous
increases in the time-HMPs, which persisted in over 40% CBGs (in time-HMP-group 2 and
4) after the order, the momentous increases in home-HMPs persisted in only 17.6% CBGs
(in home-HMP-group 4) after the order. This fact affirmed our initial attention that different
indicators would reveal human mobility from different viewpoints.

Clustering results on both full-HMP-groups and part-HMP-groups also showed sub-
stantial geographical variations of HMPs. Statewide HMPs of both showed slender de-
creases in early 2020 before any social distancing order was enforced, and those decreases
were slightly exacerbated when some weekly patterns emerged after mid-March. However,
in some of the groups (e.g., full-HMP-group 1, part-HMP-group 1, and 4), a much stronger
emergence of weekly patterns was observed after 13 March (Figures S2 and S3). Since we
arbitrarily imposed a date misalignment to match the day of the week between 2019 and
2020, the weekly patterns were therefore minimized in calculating the changes, and we
could see no weekly patterns in both HMPs before 13 March. Thus, we concluded that
the emergence of the new weekly patterns, which manifested the considerable differences
in both indicator changes between weekdays and weekends, was caused by the shelter-
in-place order. These results further proved the spatial heterogeneities of both full-time
HMPs and part-time HMPs. Finally, in comparison with all the other human mobility
indicators, delivery-HMPs showed very little information about the whole state and all four
subgroups. Those delivery-HMPs all concentrated on the zero-base line and stayed slightly
below it. Delivery-HMP-group 2 and 4 revealed more temporal variations (Figure S4), but
no obvious temporal shapes were observed. Nonetheless, due to the limited information
provided by the HMPs for this indicator, we excluded it from our further analyses.

In Figure 1, different colors from the color bar were used to highlight the densities
of the median home dwelling time change curves at the CBG level. The areas plotted in
warmer colors represent a higher density of curves and vice versa. The black horizontal
lines indicate the zero-change baseline for better visualization of positive or negative
changes, and the white curves represent the centroids (HMPs) for the State of California or
each time HMP group.

3.2. Geographical Locations of the HMPs

With the above evidence of the high geographical variations of the HMPs identified
by DTW-SOM, we further investigated the geographical locations of these HMPs, in
the active hope of associating the geographical distributions of these HMPs with their
built-in environments and unique racial/ethnic distributions. Home-HMP 3 and 4 both
showed strong peaks of increase during the shelter-in-place period and were mainly
concentrated in the more developed areas (e.g., the bay area and the greater LA area,
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as shown in Figure 2). Other human mobility indicators with similar situations showed
distinct compositions of HMPs between rural and urban areas. For example, full-HMP 1
and 2 and part-HMP 1 and 4 that showed a stronger emergence of weekly patterns were
more concentrated in the developed and populated areas such as the bay area and the
greater LA area (Figures S5–S8). The statewide spatial distributions of the HMPs sheds
light on our hypothesized relationships between HMPs and local SED status.
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An inset view focusing on LA county confirmed our hypothesis of the intra-county
heterogeneity of HMPs, especially in a populous county as such. To better delineate the
spatial distributions of the HMPs on a finer local scale taking the LA county as an example,
we studied the prevalence of each type of HMP in each service planning area (SPA) of
LA county. A service planning area, or SPA, is a specific geographic region within LA
County with its unique racial/ethnic distribution for the purpose of developing more
relevant public health and clinical services targeted to the specific health needs of the
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residents in the area. We calculated the prevalence of an HMP as the percentage of the
total number of tracked devices grouped to the HMP (Figure 3). In Figure 3, Subplot A
shows the percentages of the tracked devices of different median home dwelling times for
HMP groups; Subplot B shows the percentages of tracked devices for different percentages
of completely staying-at-home device HMP groups; Subplot C shows the percentages of
tracked devices for different full-time work device HMP groups; Subplot D shows the
percentages of tracked devices for different part-time work device HMP groups. We found
that Metro SPA and South SPA had the lowest prevalence of HMPs with a strong peak of
increase in the median home dwelling time (group 3 and group 4). It should be noted that
Metro SPA and South SPA are the ones least likely to have sources of health care compared
with other SPAs. Both had a larger proportion of adults reporting that they or their children
were in fair or poor health, according to the 2018 LA County Health Survey [25]. The 2018
LA County Health Survey also brought to our attention that Metro SPA and South SPA
both have the largest percentage of uninsured adults (South SPA: 16.6%; Metro SPA: 14.2%)
with respect to other SPAs in the county. Meanwhile, San Fernando Valley SPA, San Gabriel
SPA, and West SPA were among the top in terms of the prevalence of both full-time (group
1 and group 2) and part-time (group 1) HMPs showing the emergence of weekly patterns.
CBGs in those areas tended to have larger negative changes during weekdays than during
weekends, which means that those areas had a larger population with more awareness of
the pandemic crisis and capabilities of transiting to work-from-home behavior under the
compliance to the shelter-in-place order of the county. The 2018 LA County Health Survey
told us that those SPAs were among the top in obtaining a flu vaccination in the past year
(West SPA: 53.4% at rank 1; San Gabriel SPA: 49.3% at rank 3; San Fernando Valley SPA:
45.6% at rank 5), and those SPAs had the lowest percentage of households with reported
food insecurity issues (West SPA: 12.4% at rank 1; San Gabriel SPA: 14.7% at rank 2; San
Fernando Valley SPA: 15.6% at rank 3). Human mobility changes during the initial phases
of the pandemic in the whole of the USA were found to be associated with conventional
health behaviors (e.g., particularly less obesity and greater physical activity) and counties
with healthier behaviors had a greater reduction in movement outside the home [26]. The
distinguishing compositions of HMPs in each SPA and their associations with self-reported
health conditions, insurance status, and vaccination behaviors upheld such national-wide
conclusions at a much finer local scale.
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3.3. Social Determinants of the HMPs

The geographical distributions of HMPs show big differences both statewide and
among the SPAs (Figure 3), which means that people in places with different social factors
reacted differently to the pandemic crisis and governmental orders along with it. To further
investigate the statistical significance of the socioeconomic and demographic differences
among the DTW-SOM groups, we selected 17 SED variables and tested their differences
using ANOVA. The ANOVA test results reported in Table 2 demonstrate that the group
means of all 17 SED variables are significantly different across the mobility groups for each
of the human mobility indicators. Full descriptions of the SED variables’ abbreviations can
be found in Table 3. Given that all the F-values (calculated by the ratio of between-groups
variance over within-group variance) were significantly large (critical F-value is 3.78 and
only the F-value lower than it is from the percentage of female in part-time work groups)
and statistically significant (all p-values were smaller than 0.01), we conclude that almost
all the SED variables have variability between the group means larger than the variability
within the groups of each human mobility indicator and therefore that the CBGs with
different HMPs have different SED characteristics. For example, we can see a large F-value
(2890.76) of median income in stay-at-home mobility groups, which means that people with
different stay-at-home HMPs have significantly different incomes. To further understand
whether each type of HMP is positively or negatively associated with those SED factors,
we conducted an LDA analysis in Table 3.

Table 2. ANOVA test results for the socioeconomic and demographic variables and the five social
mobility groups 1.

Acronym
F-Values for Social Mobility Groups

Delivery Behavior Full-Time
Behavior

Part-Time
Behavior

Stay-at-Home
Behavior

Home Dwelling
Time

pnoINS 354.67 598.31 911.51 1379.71 387.98
pservOCP 60.41 191.54 364.03 525.13 187.47
pmovOCP 118.04 342.49 647.10 1007.69 295.62

pPOVERTY 506.57 899.26 1017.14 1769.73 717.53
medINC 378.37 1243.03 1868.78 2890.76 1347.08
medHSV 58.47 578.03 1157.84 2400.54 1169.18
pmHIGH 21.80 344.29 703.22 1100.62 549.63
pfHIGH 24.12 194.45 502.16 724.44 367.01

pWOUTCO 137.64 163.37 127.01 119.14 54.29
pWAH 129.92 77.67 22.53 7.89 21.30

pBLACK 64.57 141.53 147.63 123.73 32.75
pASIAN 176.16 1074.93 935.04 1863.63 686.90

pHISPAN 418.63 765.71 1114.77 1896.63 376.04
pFEMALE 85.91 27.33 3.19 24.60 20.84
pUNDER5 46.15 35.19 110.60 321.94 58.68

pmOVER65 43.06 22.04 38.95 168.57 27.33
pfOVER65 33.80 22.00 24.09 152.65 22.09

1 All p-values were < 0.01.

Table 3 lists the coefficients of the SED variables from LDA. A median household
income and the median value of owner-occupied units were re-scaled to a range of 0–1
prior to LDA so that their coefficient scales would be comparable with other variables that
were naturally defined as percentages within the range of 0–1. The LDA achieved good
performances in terms of prediction accuracies ranging from 76.47% to 79.62%. The most
contributable (either positively or negatively) SED variables are highlighted in Table 2.
The percentage of the Asian population was found in the top-3 positively contributable
for all four dichotomized HMP groups which favor both the HMP with a strong peak
of increase in median home dwelling time and the HMP with the emergence of weekly
patterns in full-time and part-time work devices. Both HMPs indicate that the residents
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in the CBGs belonged to those HMP groups who would have a tendency to stay at home
longer. In contrast, we found the coefficient directions of the percentage of the over-65
male population to be totally opposite and have top-three loadings on all LDA equations
for discriminating the HMPs. Moreover, median income was also found to be in the top-3
negatively contributable factors for most groups (except the stay-at-home behavior group).
On the other hand, social impacts on HMPs from the percentage below the poverty line are
among the negative top-3 variables for all HMP groups except for the part-time behavior
device group (even though not top-3 but still highly negatively contributable). We also
noted that the percentage of the under-5 population had top-3 negative impacts on the
stay-at-home behavior HMP group but top-3 positive impacts on all other HMP groups.

Table 3. LDA analyses of the dichotomized social mobility groups using social-economic and
demographic variables.

Acronym Full-Time
Behavior

Part-Time
Behavior

Stay-at-Home
Behavior

Home Dwelling
Time

pnoINS −0.51 −1.54 −0.84 −0.53
pservOCP −0.62 −1.68 −0.26 0.40
pmovOCP −1.04 −2.27 * −2.13 0.89

pPOVERTY −1.91 * −1.49 −4.14 * −3.30 *
medINC 3.20 ** 3.76 ** 1.26 1.51 **
medHSV −0.13 0.40 1.57 ** 0.46
pmHIGH −1.51 −2.73 * −2.64 −0.97 *
pfHIGH 0.51 −1.85 −0.93 1.23

pWOUTCO 0.09 0.05 0.00 0.07
pWAH −0.29 −0.53 −0.25 −0.12

pBLACK −1.19 −1.44 0.30 0.04
pASIAN 4.43 ** 3.68 ** 3.15 ** 1.49 **

pHISPAN −0.86 −1.04 −0.72 0.78
pFEMALE 0.58 −1.18 0.77 1.16
pUNDER5 2.34 ** 1.03 ** −2.92 * 2.27 **

pmOVER65 −4.67 * −4.48 * −3.57 * −3.16 *
pfOVER65 −0.98 −0.39 0.96 −0.60
Intercept −1.83 * −0.16 1.39 ** 0.46
Accuracy 78.19% 78.57% 76.47% 79.62%

* Top 3 negative values; ** Top 3 positive values.

4. Discussion

Human mobility changed during the COVID-19 pandemic because of various factors,
including lockdowns, remote work, and increased concerns. The whole workflow and the
results of this study shed light on the relationships between the geographic distributions
of SED characteristics and the HMPs so that researchers could more accurately model the
epidemiology of the virus and the impact of potential policy interventions to help identify
the most effective non-pharmaceutical actions. Studying the disparities in HMPs due to SED
characteristics is of great significance as it can help policymakers better understand why
certain communities may have been more or less compliant with shelter-in-place orders.
This understanding can then be used to develop targeted interventions and communication
strategies that address the specific barriers to compliance within certain communities.
Additionally, studying compliance disparities can help identify and address potential
inequities in the enforcement of such orders, ensuring that all communities are treated fairly
and equitably. Furthermore, understanding the SED factors that influence compliance with
shelter-in-place orders can also inform future pandemic response efforts, helping to ensure
that measures are designed in a way that maximizes compliance while minimizing negative
impacts on communities. Overall, this study is essential for improving the effectiveness
and equity of pandemic response efforts.

This study investigated the human mobility patterns at the CBG level proxied by
five selected human mobility indicators and discovered two iconic HMPs and their top
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important social determinants (either positively or negatively). The 2 HMPs are the HMP
with a strong asymmetry peak tailing to right in the indicators of median home dwelling
time and completely stay-at-home devices and the HMP with the emergence of strong
weekly patterns after a sharp decrease in values in the indicators of full-time and part-time
work behavior devices. Both HMPs tend to favor better political compliance to shelter-in-
place orders and provide a greater temporal context than pure value changes over time. For
example, using the pure value changes of group 1 and group 3 in Figure 1 would totally
dedifferentiate the two groups from each other since both groups have similar beginning
values and ending values, even though group 3 has the HMP with a strong asymmetry
peak whereas group 1 does not.

The fine spatial granularity at the CBG level to discover the HMPs is very impor-
tant since considerable variations in HMPs were observed in CBGs within Los Angeles
(Figures 2 and S5–S8), which may have been obscured in a county-level analysis. For ex-
ample, within LA county, many groups showed different proportions among SPAs. Many
existing COVID-19 epidemiology models used global contact rates to model the transmis-
sion rates [27–29]. This study provided a base for delineating the spatial variability in
HMPs and offered the opportunity to model COVID-19 at a finer spatial granularity with
spatially varying transmission rates controlled by spatially varying HMPs.

This study also explored the roles of social determinants of SED factors for HMPs
under COVID-19. Even though there were many existing studies on SED disparities of
HMPs which confirmed that places with higher social deprivation scores experienced
reduced mobility at lower rates and, therefore, a greater growth in COVID-19 cases and
deaths [30], our study is the first to identify HMPs solely based on their temporal shapes
compared to other methods that use the average HMPs of stratified SED groups. There are
two inherent defects to using average HMPs of stratified SED groups: (1) The analysis is
bounded to a certain SED variable (e.g., median income or social deprivation scores) and
neglects the impacts that form other SED variables. (2) There are still spatial variations in
terms of temporal shapes within each SED group which would be under-represented using
the average values.

We examined the importance and directions of 17 SED factors on the changes in four
selected human mobility indicators, and the results implied the different compliance to
governmental non-pharma interventions (e.g., shelter-in-place order by the CA govern-
ment) by different communities. For example, we speculate that the socially disadvantaged
communities with a higher percentage of the population in poverty and lower incomes
would most likely have less compliance with the shelter-in-place order. Meanwhile, both
identified HMPs would be observed less in the older communities. Moreover, the percent-
age of the under-5 population would largely increase the chance of having an HMP peak in
the median home dwelling time indicator but not the complete stay-at-home indicator. This
contradictory fact emphasizes the necessity of investigating multiple indicators to obtain a
better understanding of the whole picture of human mobility changes during the crisis.

We chose CA as our study area to remove the impacts of the time inconsistency of non-
pharmaceutical interventions by different government agencies. However, the proposed
framework could be expanded from only CA block groups to all national block groups in
the future, and it laid out the foundation for studying the impacts of the social determinant
variables on health outcomes (i.e., COVID-19 confirmed cases or COVID-19-related deaths)
through impacts on social behaviors in the future. The DTW-SOM algorithm is currently
publicly available through the Python library “dtwsom”.

Since this study is based on real-time GPS pings, it has the potential limitation of data
reliability from the location services. For example, some outlier low median home-dwelling
time values were observed on 25 February 2020 (Tuesday), which is neither a national
holiday nor a day with any known big public events, elucidating the potential risks from
either issue in location services or changes in GPS data processing protocols. This was also
confirmed as a data artifact by SafeGraph on 2 March 2020. We ended up with the solution
of imputing abnormal data using a median filter. Additionally, cell phone locations do not
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always correspond to the location of the user, as there may be instances where the device
is not in possession of the owner. Future work needs to be focused on methodologies of
preprocessing and aggregating the device-level tracking data and the generation of more
informative human mobility indicators.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13042440/s1. Figure S1. Heat map of CA statewide daily
percentage of completely at home device changes and the 4 DTW-SOM groups.; Figure S2. Heat map
of CA statewide daily percentage of full-time worker behavior device changes and the 4 DTW-SOM
groups. Figure S3. Heat map of CA statewide daily percentage of part-time worker behavior device
changes and the 4 DTW-SOM groups. Figure S4. Heat map of CA statewide daily percentage of
delivery worker behavior device changes and the 4 DTW-SOM groups. Figure S5. Geographical
locations of the CBGs in each completely staying at home groups of the whole CA state with inset
view of the SPAs of LA county. Figure S6. Geographical locations of the CBGs in each full-time work
behavior device groups of the whole CA state with inset view of the SPAs of LA county. Figure S7.
Geographical locations of the CBGs in each part-time work behavior device groups of the whole CA
state with inset view of the SPAs of LA county. Figure S8. Geographical locations of the CBGs in
each delivery work behavior device groups of the whole CA state with inset view of the SPAs of
LA county.
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