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Geographically Weighted Elastic Net:
A Variable-Selection and Modeling Method under

the Spatially Nonstationary Condition
Kenan Li* and Nina S. N. Lam y

*Department of Preventive Medicine, University of Southern California
yDepartment of Environmental Sciences, Louisiana State University

This study develops a linear regression model to select local, low-collinear explanatory variables. This model
combines two well-known models: geographically weighted regression (GWR) and elastic net (EN). The
GWR model posits that the regression coefficients vary as a function of location and focuses on solving the
problem of explaining the relationships under the spatially nonstationary condition, which a global model can-
not solve. GWR cannot fulfill the task of variable selection, however, which is problematic when there are
many explanatory variables with nonnegligible multicollinearity. On the other hand, the EN model is a mem-
ber of the regulated regression family. EN can trim the number of explanatory variables and select the most
important ones by adding penalty terms in its cost function, and it has been proven to be robust under the
high-multicollinearity condition. The EN model is a global model, however, and does not consider the spatial
nonstationarity. To overcome these deficiencies, we proposed the geographically weighted elastic net
(GWEN) model. GWEN uses the kernel weights derived from GWR and applies EN locally to select variables
for each geographical location. The result is a set of locally selected, low-collinear explanatory variables with
spatially varying coefficients. We demonstrated the GWEN method on a data set relating population changes
to a set of social, economic, and environmental variables in the Lower Mississippi River Basin. The results
show that GWEN has the advantages of both the high prediction accuracy of GWR and the low multicollinear-
ity among explanatory variables of EN. Key Words: elastic net, geographically weighted elastic net, geographically
weighted regression, spatial nonstationarity, variable selection.

本研究发展一个线性迴归模型来选择在地且低共线性的解释变因。此一模型结合了两个知名的模型: 地
理加权迴归 (GWR) 与弹性网络 (EN)。GWR 模型假定迴归系数作为区位函数而有所变化, 并聚焦解释

空间非静态条件下的关系之问题, 而该问题无法由全球模型解决。但 GWR 无法完成变因选择的任务, 因
此当具有诸多无法忽略的多重共线性之解释变因时便会产生问题。此外, EN  模型是调节迴归家族中的

一员。EN 能够通过在其成本函数中增加处罚条款, 缩减解释变因的数量, 并选择最重要的变因, 且已被

证实在高度多重共线性的条件下是有效的。但 EN 模型是全球模型, 而且不考量空间非静止性。为了克

服这些缺陷, 我们提出地理加权弹性网络 (GWEN) 模型。 GWEN 运用 GWR 衍生的核加权, 并将 EN 运
用至地方, 以选择各地理区位的变因。该结果是一组地方选择的低度共线解释变因, 并具有空间变异的

系数。我们在一组将人口变迁连结至密西西比河流域下游的社会、经济与环境变因组的数据集来展现

GWEN 模型。该结果显示, GWEN 同时具有 GWR 高度预测准确性以及 EN 解释变因的低度多重共线性

之优势。 关键词： 弹性网络, 地理加权弹性网络, 地理加权迴归, 空间非静止性, 变因选择。

Este estudio desarrolla un modelo de regresi�on lineal para seleccionar variables explicativas de colineal bajo.
Este modelo combina dos modelos bien conocidos: la regresi�on geogr�aficamente ponderada (GWR) y la red
el�astica (EN). El modelo GWR plantea que los coeficientes de regresi�on var�ıan como una funci�on de local-
izaci�on y se enfoca en resolver el problema de explicar las relaciones bajo la condici�on espacialmente no esta-
cionaria, que un modelo global no puede resolver. Sin embargo, la GWR no puede cumplir la tarea de
selecci�on de variables, que resulta problem�atica cuando hay muchas variables explicativas con multicolineari-
dad no desde~nable. Por otra parte, el modelo EN hace parte de la familia de regresi�on regulada. El EN puede
recortar el n�umero de variables explicativas y seleccionar las m�as importantes a~nadiendo t�erminos de sanci�on
en su funci�on de costo, adem�as de haber resultado robusto bajo la condici�on de alta multicolinearidad. Sin
embargo, el EN es un modelo global que no considera la no estacionalidad espacial. Para remediar estas defi-
ciencias, proponemos el modelo de la red el�astica geogr�aficamente ponderada (GWEN). El GWEN usa los
pesos kernel derivados de la GWR y aplica localmente el EN para la tarea de seleccionar variables en cada
localizaci�on geogr�afica. El resultado es un conjunto de variables explicativas de colineal bajo localmente selec-
cionadas con coeficientes que var�ıan espacialmente. Hicimos una demostraci�on del m�etodo GWEN sobre un
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T
he linear regression model is probably one of
the oldest models for identifying relationships
among variables. Over the years, researchers

have made extensive efforts in modifying the linear
regression model into various forms for spatial analysis
and modeling (e.g., Casetti 1972; Griffith 1981, 2008;
Anselin 1995). In regression analysis, two aspects are
very important: the prediction accuracy of the
response (dependent) variable and the interpretation
of the explanatory (independent) variables. When it
comes to analyzing geographical phenomena, spatial
nonstationarity and multicollinearity are two of the
major obstacles to achieving satisfactory regression
results. In the case of spatial nonstationarity, a
“simple” global regression model often cannot explain
the global relationships between sets of variables accu-
rately because the relationships vary over space. The
spatial nonstationarity problem requires a model to
allow different relationships to exist within the data
set at different locations. On the other hand, multicol-
linearity is a phenomenon in which two or more
explanatory variables in a multiple regression model
are highly correlated, meaning that one can be pre-
dicted from the others with a substantial degree of
accuracy. When multicollinearity exists, the coeffi-
cient estimates of the regression model will change
erratically in response to small changes in the model
or the data, making it difficult to derive valid coeffi-
cient estimates for those explanatory variables that
exhibit high multicollinearity (Farrar and Glauber
1967). The fact that the explanatory variables are
redundant with respect to others also makes the inter-
pretation of the regression difficult. Local linear regres-
sion, such as geographically weighted regression
(GWR; Brunsdon, Fotheringham and Charlton 1996;
Fotheringham, Charlton, and Brunsdon 1996; Fother-
ingham, Brunsdon, and Charlton 2002), and regular-
ized linear regression, such as elastic net (EN; Zou and
Hastie 2005), are products that can be combined to
overcome these two obstacles.

The objective of this article is to describe a new
method called geographically weighted elastic net
(GWEN), which combines GWR and EN to handle
spatial nonstationarity and multicollinearity simul-
taneously. The development of GWEN is motivated

by the fact that complex system research is increas-
ingly needed to tackle multifaceted societal prob-
lems, and such complex system research requires
the analysis of a large number of natural and
human factors. Finding a method to better extract
the various factors with minimal multicollinearity
and maximal explanation of nonstationarity will
help improve our understanding and modeling of
the system dynamics. We demonstrate the GWEN
method using a data set relating population changes
to a set of social, economic, and environmental
variables in the Mississippi River Delta region (K.
Li 2015; Qiang and Lam 2015, 2016). Next we pro-
vide a brief background of related research, fol-
lowed by a description of the methods of GWR,
EN, and GWEN and a case study of population
changes in the Mississippi Delta. We conclude with
a summary of the pros and cons of the new GWEN
method.

Background

Brunsdon, Fotheringham, and Charlton (1996)
developed GWR in the field of spatial analysis to over-
come the issues of spatial nonstationarity (Fothering-
ham, Charlton, and Brunsdon 1996; Fotheringham,
Brunsdon, and Charlton 2002). GWR allows the
parameters for each geographical location to be esti-
mated and mapped individually, as opposed to having
a single set of globally estimated coefficients fitted to
the entire data set. By doing so, the method estimates
the spatially varying relationships between explana-
tory variables and a response variable. Although
GWR is not designed to address spatial autocorrela-
tion directly, which is another inherent property of
spatial data, the method’s ability to handle spatial
nonstationarity by capturing local relationships can
reduce the effects of spatial autocorrelation on the
regression model (Fotheringham, Brunsdon, and
Charlton 2002). In other words, low spatial autocorre-
lation in the residuals is to be expected. If the residuals
of an ordinary linear regression are sufficiently auto-
correlated, then one of the underlying assumptions of
ordinary linear regression is violated and the regression

conjunto de datos que relacionan los cambios de poblaci�on con un conjunto de variables sociales, econ�omicas y 
ambientales en la Cuenca del Bajo R�ıo Misisipi. Los resultados muestran que el GWEN re�une las ventajas tanto 
de la alta exactitud de predicci�on de la GWR como la baja multicolinearidad propia de las variables explicati-
vas del EN. Palabras clave: red el�astica, red el�astica geogr�aficamente ponderada, regresi�on geogr�aficamente ponderada, 
no estacionalidad espacial, selecci�on de variables.
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analysis could be unreliable. GWR is preferable in
such cases, because GWR accounts for some of
the spatial autocorrelation latent in georeferenced
variables by transferring them to the spatially varying
coefficients. Griffith (2008), however, found that
GWR might not be able to overcome the problem of
spatial autocorrelation because positive spatial auto-
correlation in the residuals from GWR still existed.
To illustrate the disagreement among researchers
(Fotheringham and Oshan 2016), the spatial autocor-
relation of the residuals of several models is tested in
the case study that follows.

A linear regression model that contains multicolli-
nearity among explanatory variables might yield good
fitness and statistical significance, but it will result in
parameter estimates that are sensitive to changes in
model specification and sample coverage (Farrar and
Glauber 1967). Hence, methods to select parsimoni-
ous models with the best explanatory variables while
minimizing the overlapping among variables would be
preferred. Stepwise methods are a widely employed
approach to minimizing multicollinearity. Stepwise
multiple regression algorithms operate by successive
additions (forward selection), successive removals
(backward elimination), or a combination of the two
(bidirectional elimination), of significant variables
according to a specified criterion of variance.
Whittingham et al. (2006), however, summarized the
principal drawbacks of stepwise multiple regression,
which include bias in parameter estimation, inconsis-
tencies among model selection algorithms, an inherent
problem of multiple hypothesis testing, and inappro-
priate focus or reliance on a single best model. The
problem of inconsistencies owing to the order of vari-
able entry (or deletion) and the number of candidate
variables (Derksen and Keselman 1992) is especially
acute when the explanatory variables have multicolli-
nearity (Grafen and Hails 2002).

The multicollinearity problem can be exacer-
bated in GWR. Wheeler and Tiefelsdorf (2005)
suggested that even moderate multicollinearity
among locally weighted explanatory variables can
lead to strong dependence in the local estimated
coefficients. This can be explained by the fact that
GWR often involves smaller sample sizes and picks
observations with similar values; hence, it is more
likely to yield a poorly conditioned design matrix,
as demonstrated in some studies (Fotheringham,
Kelly, and Charlton 2012; B~arcena et al. 2014).
As an alternative to GWR, Wheeler and Calder
(2007) found that the Bayesian regression model

with spatially varying coefficient processes generally
performs better and degrades less substantially than
GWR under strong multicollinearity.

Multicollinearity in GWR can be diagnosed in a
number of ways. Fotheringham, Kelly, and Charlton
(2012) used Akaike’s information criterion (AIC)
as a criterion for selecting significant variables from
a set of twelve demographic variables in a GWR
framework. The calculation of AIC in a model is
shown in Equation 1.

AICD 2mC nln
RSS

n

� �
; (1)

where n is the number of observations, m is the num-
ber of explanatory variables, and RSS (residual sum of
squares) is the sum of squared errors of prediction in
the model. Using AIC as a criterion of fitness is
known to be an effective way to create a sparsity
model and the method has nice theoretical proper-
ties. The optimization of the final regression model
that has the least multicollinearity, however, is NP-
hard and computationally challenging (Liu and Li
2016). Fotheringham, Kelly, and Charlton (2012)
used a stepwise procedure (Step-AIC) instead to
select variables to minimize the computational prob-
lem. The method starts with no explanatory variables
selected, and the variable with the lowest AIC is
added at each successive step. The variables selected
from this Step-AIC method are global, which means
that all of the geolocations share the same set of
explanatory variables. Thus, the method also has the
same weaknesses as the normal stepwise method men-
tioned earlier.

Based on the work by Belsley (1991), Wheeler
(2007) pioneered the idea of Ridge regression along
with GWR (GWR–Ridge) and developed a module for
R implementation. Alternatively, Vidaurre, Bielza, and
Larra~naga (2012) and Wheeler (2009) proposed the
use of least angle regression (LAR) and least absolute
shrinkage and selection operator (Lasso) algorithms
(Tibshirani 1996) for simultaneous regularization and
variable selection in the context of local and geograph-
ical regression (GWR–Lasso). Ridge regression and
Lasso regression are both regularized regression meth-
ods, which place a constraint (i.e., penalty terms) on
the regression coefficients to reduce multicollinearity.
Integrating regularized regression terms into the GWR
framework can improve the model by minimizing mul-
ticollinearity, but both Ridge regression and Lasso
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regression have their own disadvantages (Zou and Has-
tie 2005). Ridge regression can continuously shrink the
values of the parameters (coefficients), but it cannot
eliminate any variable through setting its coefficient to
zero. As a result, Ridge regression always keeps all of
the explanatory variables in the model and is not able
to offer a parsimonious model. In contrast, Lasso regres-
sion can be used to select variables while minimizing
the loss of prediction accuracy, but Lasso regression
tends to select only one variable from the group,
among which the pairwise correlations are very high.
Lasso regression does not care which one is selected,
and it has been empirically observed that the predic-
tion performance of Lasso regression is not as good as
Ridge regression (Tibshirani 1996). To take advantage
of both Ridge regression and Lasso regression, Zou and
Hastie (2005) developed a new method called EN. EN
is a hybrid of the Ridge and the Lasso (Equation 7),
which can serve the purpose of both automatically
selecting the variables as with Lasso and keep a high
prediction performance when collinearity exists, as
does Ridge.

The proposed GWEN method aims to overcome
some of the shortcomings discussed in these previous
studies by incorporating EN into the GWR framework.
The purpose of its development is to model spatially
varying relationships, minimize multicollinearity, con-
strain and stabilize regression coefficients, and lower
prediction errors. The penalty terms in the cost func-
tions of the Step-AIC model, the GWR–Lasso model,
and the GWR–Ridge model are often referred to as L0,
L1, and L2, because they are a function of zero-power,
one-power, and two-power, respectively, of the
explanatory variables in the models. The details of the
cost functions of the Ridge model and the Lasso model
are described in the Methods section. Table 1 summa-
rizes and compares the characteristics of the methods
just reviewed as well as the proposed GWEN.

Methods

Geographically Weighted Regression

In an ordinary least squares (OLS) regression, the
relationship between the response variable and the
explanatory variables is modeled as

yi D
Xm
kD 1

XkibkCb0 C ei; (2)

where yi is the response variable at observation (or
location) i, Xki is the value of the kth explanatory vari-
able at location i, bk is the regression coefficient of the
kth explanatory variable, b0 is the constant to be esti-
mated, and ei is the residual at observation i. bk and b0
are to be estimated to minimize the following residual
term:

1

2N

XN
iD 1

yi¡b0¡
Xm
kD 1

Xkibk

!2

; (3)

where N is the number of observations or data points.
In GWR, a local regression model is fitted at each

data point (location) using distance-weighted subsam-
ples defined by a bandwidth. The GWR model for
each location i becomes

yi D
Xm
kD 1

XkibkiC b0iC ei; (4)

where bki is the local regression coefficient for the
kth explanatory variable at location i, and b0i is the
intercept at location i. Hence, in GWR, two param-
eters will need to be determined, the distance
decay–based kernel function and the bandwidth.
Some commonly used kernel functions are the

Table 1. Variable selection methods used in geographically weighted regression framework

Name Penalty term Sources Variables selected

Step-AIC L0 Fotheringham Kelly, and Charlton
(2012)

All of the geolocations share the same
selection.

GWR–Lasso L1 Wheeler (2009) Each geolocation selects its own explanatory
variables.

GWR–Ridge L2 Wheeler (2007) Each geolocation selects its own explanatory
variables.

GWEN Combination of L1 and L2 Proposed in this study Each geolocation selects its own explanatory
variables.

Note: AIC D Akaike’s information criterion; GWR D geographically weighted regression; Lasso D least absolute shrinkage and selection operator; GWEN D
geographically weighted elastic net.
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Gaussian function, the bi-square nearest neighbor
function, and the exponential function (Brunsdon,
Fotheringham, and Charlton 1996; Fotheringham,
Brunsdon, and Charlton 2002). There are two gen-
eral schemas to determine the bandwidth: fixed
bandwidth or adaptive bandwidth. In a fixed band-
width schema, the kernel bandwidth is a fixed value
and is often estimated by the leave-one-out cross-
validation method, which is used to iteratively find
the bandwidth with the lowest prediction error of all
yis (i.e., root mean square error [RMSE]). Some
researchers also suggest the method of AIC for band-
width estimation, although it is not clear how the
results from these two methods might differ
(Wheeler 2007, 2009). In an adaptive bandwidth
scheme, the bandwidth is an adaptive value to allow
at least a certain number of data points (geoloca-
tions) included in the kernel. The predetermined
number of data points can be estimated similarly by
cross-validation or AIC.

Elastic Net

Because of the need to minimize multicollinearity
and achieve parsimony in a single model, Zou and
Hastie (2005) developed a new regularization and var-
iable selection method called EN. EN is a hybrid of
the Lasso regression and the Ridge regression (Hoerl
and Kennard 1988), both of which add a penalty term
in the cost function of OLS regression. As mentioned
before, these regression methods are often referred to
as regularized regressions. Like many other multivari-
ate methods, they require that the variables be normal-
ized before the analysis.

Ridge regression is a technique for analyzing multi-
ple regression data that suffer from multicollinearity.
The minimization criterion of Ridge regression is mod-
ified from Equation 3:

1

2N

XN
iD 1

yi¡ b0 ¡
Xm
kD 1

Xkibk

!2

C λ2
Xm
kD 1

b2
k; (5)

where λ2 is a positive regularization parameter, m is the
number of explanatory variables, and bk denotes the
regression coefficient of variable k. λ2 ranges from 0 to
1; the higher the λ2 value, the higher the regularization
and the larger the shrinkage of the regression coeffi-
cient value.

In like manner, Lasso regression is another popular
procedure for combating multicollinearity. The

difference between Ridge and Lasso is the penalty
terms used in their minimization criteria. The minimi-
zation criterion of Lasso regression is defined in
Equation 6:

1

2N

XN
iD 1

yi ¡b0 ¡
Xm
kD 1

Xkibk

!2

C λ1
Xm
kD 1

jbkj: (6)

In the same way as Ridge regression, λ1 ranges from 0
to 1; the higher the λ1 value, the larger the shrinkage,
but Lasso regression can actually achieve the goal of
continuously shrinking some of the parameters to zero,
thus performing the function of variable selection
simultaneously (Zou and Hastie 2005).

As a combination of Ridge and Lasso, EN can serve
the purpose of both automatically selecting the varia-
bles as does the Lasso and keeping a high prediction
performance when collinearity exists as does the Ridge
(Zou and Hastie 2005). The penalty term of EN is a
trade-off between the Lasso regression penalty (often
referred to as L1 penalty) and the Ridge regression pen-
alty (often referred to as L2 penalty). The regulariza-
tion problem of EN is defined in Equation 7.

1

2N

XN
iD 1

yi ¡b0 ¡
Xm
kD 1

Xkibk

!2

C λ
Xm
kD 1

. 1¡að Þb2
k Cajbkj/;

(7)

where a, ranging from 0 to 1, is the parameter that
determines whether the regression model is more like
a Lasso or a Ridge regression. The EN is the same as a
Lasso regression when a equals 1. On the contrary, as
a shrinks toward 0, the EN approaches a Ridge regres-
sion. λ is a regularization parameter that determines
the number of explanatory variables selected (with
nonzero coefficients). λ is 0 when all variables are
selected. As λ increases, the number of zero bk
increases, which means that the number of variables
selected decreases until it reaches a maximum when
no variables are selected. When solving an EN prob-
lem, the value of λ is often incrementally tested hun-
dreds of times starting from 0, at which the EN turns
into an ordinary regression with no regularization (all
nonzero coefficients) to its maximum value at which
there is no nonzero bk. The smallest tested value at
which the first zero bk occurs is defined as the lower
boundary, whereas the largest tested value at which
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the cross-validated RMSE increases dramatically is
defined as the upper boundary. The final value of λ is
chosen by the user within this safe range according to
the desired number of explanatory variables.

Geographically Weighted Elastic Net

This study proposes a method called GWEN to
model the relationships between variables locally
while selecting the most significant ones to minimize
multicollinearity. It can be viewed as a regulated form
of GWR. In other words, it generates parsimonious
models locally for a geographically based data set.

Definition

Similar to the central idea of GWR, GWEN also
uses a search (radius) bandwidth r to identify the
data points geographically located near a particular
observation (location) Pi. Then bki is estimated by
calibrating a weighted EN based on the data points
geographically located within this radius. A defined
distance decay function is then used to assign the
weight of each data point j to observation i within the
radius ri. Let wij be the weight of point j to observa-
tion i and wij for the points outside the search radius
are set to 0, then the GWEN regularization regression
problem for each observation i is defined as follows:

1

2

Xq
jD 1

wijXN

kD 1
wij

yj¡b0j ¡
Xm
kD 1

Xkjbkj

!2

C λ
Xm
kD 1

. 1¡að Þb2kiCajbkij/ (8)

wij D Fkernel dij; r
� �

; ifdij�ri
wij D 0; ifdij> ri

;

�
(9)

where j denotes the data points located within the
radius (observation i is included). dij denotes the dis-
tance between observation i and point j, Fkernel is a
defined distance decay function, ri is the defined
search radius for Fkernel, and q is the number of data
points within the radius. In a fixed bandwidth
schema, ri is a predetermined constant, whereas in
an adaptive bandwidth scheme, ri is estimated by a
predetermined number of neighbor data points.

Solution

Solving a GWEN is basically like solving a
weighted EN for each observation iteratively using
local weights assigned by the defined kernel function.
The solution method is based on the coordinate
descent algorithm used by Friedman et al. (2007;
Friedman, Hastie, and Tibshirani 2010) for fitting gen-
eralized linear models with EN penalties. The coordi-
nate descent algorithm is a nonderivative optimization
algorithm for finding the minimum of a given func-
tion. The underlying idea of the algorithm is that the
minimization of a multivariable function can be
achieved by minimizing the function along each varia-
ble’s direction at a time; that is, by solving the univari-
ate (much simpler) optimization problems in a loop
(Wright 2015). For the multivariate minimization
problem as in GWEN, all of the bki are to be esti-
mated. For a specified observation Pi, the coordinate
descent algorithm first generates an initial guess for
each bki. Then, the algorithm solves a simplified uni-
variate problem by finding the optimized value for
each bki one by one (totally k steps). After going
through each k, the univariate optimization values of
the first round are obtained and the initial guess values
are substituted with the new values, and these values
will be used as initial values for the next round of itera-
tion. The iteration stops until the minimum of the
multivariate function converges.

Before using the coordinate descent algorithm to
solve a GWEN problem (Equations 8 and 9), three
parameters need to be derived: the search bandwidth
or the kernel distance r, the penalty coefficient λ, and
the coefficient a, which determine whether the regres-
sion problem is more like a Lasso or a Ridge regression.
We used the K-fold cross-validation method, which
uses the criterion of minimizing the RMSE between
the predicted and the real values to iteratively derive
these three parameters. K is a user-provided or default
integer (K D 10 was used in this study). The tuning
range of r is set by the user, and its values depend on
the research problem. The tuning range of a is from 0
to 1, and the tuning range of λ is determined by the
solution algorithm (the upper boundary and the lower
boundary mentioned before).

There are two options in setting the parameters dur-
ing the cross-validation process of tuning the parame-
ters in the weighted EN for each individual
observation. The parameters can be set either locally,
which means that the weighted EN for each individual
observation has its own parameter setting, or globally,

1587Geographically Weighted Elastic Net



which means that all of the observations’ weighted EN
share the same parameter setting. We chose different
options for the three parameters, a, r, and λ. First, we
set a globally to make sure that every observation has
the same trade-off between the L1 (Lasso) and L2
(Ridge) penalties. For r, if there is small spatial varia-
tion in the density of observations, a global kernel
bandwidth can ensure that the weighted EN for each
observation is calibrated by a similar number of neigh-
borhood observations. If the density of the observa-
tions varies a lot spatially, however, some of the
observations might have the problem of lacking neigh-
bors or even no neighbors for a given global band-
width. In such cases, tuning r locally (adaptive
bandwidth scheme) to make sure that each observa-
tion has a sufficient and similar number of neighbors is
preferable. Thus, in the case of large spatial variation
of observation locations, a global number of neighbors
instead of a global r is suggested, whereas in the oppo-
site case, a global r can be used to save computational
time.

For λ, because it affects the number of selected vari-
ables indirectly, a global setting of it will lead to differ-
ent numbers of explanatory variables in different
observations’ regression functions (Equation 8). In
addition, a global value of λ might exceed the proper
tuning range for certain observations, which means
that for certain observations, the defined global value
might be either outside of the upper tuning boundary,
causing a dramatic increase in RMSE, or outside of the

lower tuning boundary, causing no variable selected at
all. Thus, instead of a global setting of λ, we chose to
use a global setting of the number of variables to be
selected to make sure that the local models are compa-
rable. Once the number of explanatory variables is set
globally, the solution algorithm will set the local value
of λ accordingly.

The coordinate descent algorithm and the cross-
validation tuning process constitute the GWEN solu-
tion method, and the whole procedure is listed in the
Appendix. The computational complexity of GWEN
is O(m3 C m2n), where m is the number of explanatory
variables and n is the number of geolocations.

A GWEN Analysis of Population Changes
in the Lower Mississippi River Basin

We used a case study of the population changes
from 2000 to 2010 in the Lower Mississippi River
Basin area to demonstrate the ability of the proposed
GWEN in handling the spatial nonstationarity and
the multicollinearity problem. The study area contains
three major cities in Louisiana (New Orleans, Baton
Rouge, and Lafayette) and is very diverse in both the
natural and human environments (Figure 1). The
region is also very vulnerable to coastal hazards and
climate change effects such as sea-level rise and land
subsidence. The southern coastal part of the study
area, including the City of New Orleans, has been

Figure 1. The population count in 2010 defined in 3 km £ 3 km grids in the study area. (Color figure available online.)
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suffering from steady population decline over the past
decade, whereas the northern part of the study area
has experienced rapid population growth. The disap-
pearing land in the coastal area has been a major prob-
lem facing the region, which prompts the question of
whether southern Louisiana is sustainable given the
continued land loss and population decline. Answer-
ing this critical question requires a system-level analy-
sis of the complex coupling effects between the
natural and human factors. Finding out the major fac-
tors of population changes is the first step toward more
accurate modeling, which is needed for scenario simu-
lation so that the population change patterns can be
evaluated under various sustainability options (K. Li
2015; Qiang and Lam 2015; Twilley et al. 2016).

The two utilities of the GWEN method are that,
first, GWEN has the GWR’s advantage of lower-
ing the regression residuals by providing local rela-
tionships and, second, GWEN has the EN’s advan-
tage of maintaining prediction performance and
eliminating the multicollinearity and selecting the
explanatory variables. The results generated from
the GWEN model can be used to facilitate the
modeling of the coupled dynamics between natural
and human factors. In geosimulation using the bot-
tom-up approach, a main challenge is defining the
behaviors of the “bottom” units. Very few existing
models have focused on capturing the local relation-
ships, which are needed to model a complex phe-
nomenon in a diverse region. Appling GWEN in
modeling population changes in this study area
should help in extracting the local rules and key var-
iables governing the population dynamics, as well as
evaluating how they differentiate over space. These
local rules will help inform the building of a bottom-
up simulation model in the study area.

Data Description

The data set used was created by K. Li (2015),
which includes the variable of population change
in number from 2000 to 2010 as the response vari-
able and thirty-five social–environmental variables
as explanatory variables for the study area (see
Table 2). The original data were obtained from var-
ious sources in different scales and resolutions.
Areal interpolation was used to transform the cen-
sus data into a 3 km £ 3 km grid lattice (Good-
child and Lam 1980; Lam 1983, 2009). The areal
interpolation procedure used is an “intelligent”

areal interpolation method that has the volume-
preserving property (Shu et al. 2010; Cromley et al.
2012). In this study, we used the developed land
cover area layer as an ancillary (“intelligent”) layer
to derive the weights for interpolating each census
variable from census tract or block group bound-
aries into the 3 km £ 3 km grid cells. This areal
interpolation method with an additional control
variable is very similar to the principle of dasymet-
ric mapping, a mapping technique designed to
reflect within-zone variations (Lam 1983, 2009).
The data observations were the cells with popula-
tion greater than 100 in the year 2000. There were
a total of 1,565 data observations in the study area.
Figure 1 shows the study area with the population
counts for these data observations.

Model Specification

This section specifies the kernel weighting func-
tion, the parameter settings, and the method to
indicate the multicollinearity. Because the goal of
this article is to introduce the method, we used a
fixed bandwidth instead of adaptive bandwidth so
that we have a simpler environment to compare
with. Hence, we set a global value r for all ri. The
global r was determined by cross-validation
described next. A Gaussian function, a commonly
used weighting function, was used for all of the
observations. Equation 10 shows the Gaussian func-
tion used to calculate the weights wij:

wij D e
¡

dij
2

s2 ; if dij�r
wij D 0; if dij > r

;

8><
>: (10)

where s determines the rate of the distance decay.
The larger the s, the slower the decay speed. Other
notations are the same as in Equation 9. In this study,
the value s was set to make the weights at the edge of
the bandwidth (radius) around 1 percent of the
weight at the center.

We used the cross-validation method (as
described in the Solution section) to derive the val-
ues of a (trade-off between Ridge and Lasso) and
the bandwidth r. The tuning range of the band-
width was from twenty-five to forty-five grids (i.e.,
75–135 km) with an increment of five grids
(15 km). The tuning range of a was from 0.1 to 1,
with 0.2 as the incremental step. We set the cross-
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Table 2. Acronyms and descriptions of the variables used in this study

Socioeconomic and housing variables

Categories Acronym Description Year

Housing Occupied Percent; occupied housing units 2000
NonVehicle Percent; occupied housing units with no vehicles available 2000
NonFuel Percent; occupied housing units with no house heating fuel

used
2000

NonPlumb Percent; occupied housing units lacking complete plumbing
facilities

2000

NonKitchen Percent; occupied housing units lacking complete kitchen
facilities

2000

NonTele Percent; occupied housing units with no telephone service 2000
NonMtg Percent; specified owner-occupied units without mortgage 2000
OwnerR Percent; owner-occupied housing units 2000
MedValue Number; median value of specified owner-occupied units

(dollars)
2000

MedRent Number; median gross rent of specified renter-occupied units
(dollars)

2000

Households OCST20 Percent; owner cost as a percentage of household income less
than 15 percent

2000

OCST35 Percent; owner cost as a percentage of household income more
than 35 percent

2000

Rent15 Percent; gross rent as a percentage of household income less
than 15 percent

2000

Rent35 Percent; gross rent as a percentage of household income more
than 35 percent

2000

OCSTWMTG Number; median selected monthly owner costs with a
mortgage (dollars)

2000

OCSTNMRG Number; median selected monthly owner costs without a
mortgage (dollars)

2000

HhSize Number; average household size 2000
MeanTime Number; mean travel time to work (minutes) 2000
MedIcm Number; households median income (dollars) 2000

Individuals Female Percent; total female population 2000
Population Number; total population 2000
Under5 Percent; total population under 5 years old 2000
Over65 Percent; total population over 65 years old 2000
HighSch Percent; population over 25 years old with high school

graduation or higher
2000

Married Percent; population over 15 years old and now married (except
separated)

2000

Employed Percent; population over 16 years old employed 2000
Poverty Percent; individuals below poverty level 2000

Structures Road Number; road density 2007
Pipeline Number; pipeline density 2007
GasWell Number; oil and gas injection well density 2007

Environmental Damages Number; property damages by natural hazards (coastal, flood,
hurricane, thunderstorm, and tornado) in 2010 inflation rate
(dollars)

2000– 2010

Subsidence Number; subsidence rate interpolated by empirical Bayesian
kriging using benchmarks

2004

Elevation Number; mean elevation calculated from LiDAR images
(meters)

2000–2010

Land use and land cover Developed Percent; percentage of developed land use area 2001
Water Percent; percentage of open water land use area 2001
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validation to tenfold, which means that the original
data set was randomly partitioned into ten subsets.
Of the ten subsets, nine were used for training the
model and the remaining one for testing the model.
The cross-validation process was repeated ten times
(folds), with each of the ten subsets used once as
the test data. The RMSE of each combination of a
and r within their defined tuning ranges is displayed
in Figure 2, which shows no obvious correlations
between a, r, and RMSE. We picked the lowest
RMSE combination of a D 0.9 and r D 75 km as
the final parameter setting of the GWEN model in
this study.

We set the number of variables to be selected to
ten according to the inflection point of the curve
(Figure 3) showing the GWEN model’s average
RMSEs over the λ values (which indicates the num-
ber of selected variables). We used a variance infla-
tion factor (VIF), which measures how much the
variance of an estimated regression coefficient for
an explanatory variable is increased because of mul-
ticollinearity, to quantify the severity of the multi-
collinearity. VIF for each explanatory variable k is
calculated using Equation 11:

VIF kð ÞD 1

1¡Rk
2
; (11)

where Rk
2 is the coefficient of determination between

variable k and the other explanatory variables. Gen-
erally, a rule of thumb is that if VIF(k) is greater than
10, then the multicollinearity of variable k is high
(Kutner et al. 2008).

Global Moran’s I was calculated using Equation 12
to evaluate the spatial autocorrelation of the residuals

of different methods (H. Li, Calder, and Cressie
2007). The results are included in Table 3. Equation
12 is

ID n

W

X
i

X
j
wij.xi ¡ x/.xj¡ x/X

i
.xi ¡ x/

2
; (12)

where x is the variable of interest indexed by i and j, n
is the total number of observations, wij is the weight
between observation xi and xj, and W is the sum of all
wij. We used an inverse distance weighting function to
determine the weights in this study, Moran’s I values
range from –1 to C1, from perfect negative to perfect
positive spatial autocorrelation. Values close to 0
imply little spatial autocorrelation.

Results and Discussion

We built and trained a GWEN model using the
parameters described earlier. We compared the
results from applying GWEN to the study area with
the results from using seven other related models to
provide an evaluation of GWEN’s properties and
performance. The seven other models were an OLS
regression model, a stepwise regression model, a
GWR model, an EN model, a Step-AIC model, a
GWR–Ridge model, and a GWR–Lasso model. We
set the parameters of these seven models according
to the GWEN model to make the comparisons
among them under the same criteria. The

Figure 3. Average root mean square errors of all of the local sub-
models in geographically weighted elastic net under different val-
ues of λ. RMSE D root mean square error. (Color figure available
online.)

Figure 2. Average mean square errors of the geographically
weighted elastic net model using different bandwidth r and a

combinations.
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comparison here is not based on the best perfor-
mance of each method including GWEN, and it is
not a performance evaluation of the methods. As
shown in Table 3, these methods are not entirely
comparable either, because some methods have
only one of the two properties (local or reducing
multicollinearity), whereas only GWR–Lasso and
GWEN have both. Setting some of the parameters
constant for all of the methods will help us better
understand the properties of GWEN.

For each model, a (if used) was 0.9, bandwidth (if
used) was 75 km, and the number of variables to be
selected (if applicable) was set to ten. For the variable-
selecting models (Stepwise, EN, Step-AIC, GWR–
Lasso, and GWEN), the significance level of entering
or removing a variable using t values was manually
specified to ensure that only ten variables were

selected in its final format. In the Step-AIC model,
the process of variable selection stops at Step 10. The
AIC value for each step is shown in Figure 4, which
shows that the decrease of AIC values slows down
after around Step 5, implying that the first five varia-
bles were the most important. Ten variables were still
selected in the Step-AIC model, however, to enable
comparison across methods.

We evaluated all eight models based on their pre-
diction accuracy (RMSE) and their multicollinearity
among the selected explanatory variables (VIF). In
addition, we computed the final AIC and spatial auto-
correlation for each model. For the local models,
including GWR, GWR–Ridge, GWR–Lasso, and
GWEN, the mean VIFs (mVIF) calculated from their
local submodels were used. Table 3 lists the RMSE;
the maximum, minimum, and mean VIFs; the percent-
age of variables having VIFs � 10; Moran’s I; and the
AIC. Figure 5 plots the predicted values against the
measured values of all eight models.

The subplots in Figure 5 look similar among
methods, but a close observation shows that sub-
plots d, e, f, g, and h (GWR, Step-AIC, GWEN,
GWR–Lasso, GWR–Ridge) are more concentrated
around the y D x diagonal line. This means that
the geographically weighted models generally gain
better prediction accuracy. All eight models have
their predicted values higher than the measured
values for the data points near the lower left corner
of the subplots. These are the data points that suf-
fered extreme population decreases, and they are
mainly located in the New Orleans metropolitan

Figure 4. Akaike’s information criterion curve for the first ten
steps in the Step-AIC model. AIC D Akaike’s information crite-
rion. (Color figure available online.)

Table 3. Comparison of the accuracy and multicollinearity of the eight models

Metrics Ordinary GWR
GWR–
Ridge Stepwise

Elastic
net

Step-
AIC

GWR–
Lasso GWEN

Reduce collinearity No No No Yes Yes Yes Yes Yes
Local No Yes Yes No No No Yes Yes
Root mean square error 0.63 0.42 0.51 0.64 0.65 0.57 0.59 0.55
Mean VIF (mVIF) 3.35 252.64 4.92 1.58 2.15 1.61 2.78 4.04
Maximum VIF (mVIF) 13.10 2,566.20 13.10 3.55 4.06 3.28 2.59 5.20
Minimum VIF (mVIF) 1.10 2.48 1.1 1.04 1.03 1.20 2.05 3.02
Percentage of VIFs

(mVIFs)
(>10)

0.17 0.91 0.91 0.00 0.00 0.00 0.00 0.00

# (Average)
explanatory variables

35.00 35.00 35.00 10.00 10.00 10.00 10.18 10.18

Final AIC ¡1,376 ¡2,645 ¡2,037 ¡1,377 ¡1,328 ¡1,529 ¡1,631 ¡1,851
Global Moran’s I 0.069 0.009 0.019 0.075 0.095 0.076 0.046 0.045

Note: GWR D geographically weighted regression; AIC D Akaike’s information criterion; Lasso D least absolute shrinkage and selection operator; GWEN D
geographically weighted elastic net; VIF D variance inflation factor.
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area (due partly to Hurricane Katrina, which
occurred within this study’s time span).

Table 3 illustrates several points. First, as expected,
the local models such as GWR, GWR–Ridge, GWR–
Lasso, and GWEN generally had higher prediction
accuracies (smaller RMSE) than the global models
such as the OLS, stepwise, and EN models. This
implies that with the consideration of spatial nonsta-
tionarity, the local models explain the relationships
between population changes and the explanatory fac-
tors better. Second, also expected, the regularized
models (except GWR–Ridge), Step-AIC, and the
stepwise models, no matter whether global or local,
yielded low multicollinearity (with VIF or mVIF gen-
erally smaller than 10). On the contrary, there was a
severe multicollinearity problem in the OLS model,
GWR, and GWR–Ridge models, and especially in the
GWR model, the multicollinearity was very high.
Third, when considering only the methods that have
the property of reducing multicollinearity (stepwise,
EN, Step-AIC, GWR–Lasso, and GWEN), GWEN
had the lowest RMSE (0.55), followed by GWR–Lasso

(0.59). The slightly higher accuracy of GWEN, how-
ever, was compensated by a slightly higher degree of
multicollinearity (mVIF D 4.04). Table 3 also shows
that in general GWR–Lasso and GWEN are highly
comparable. The GWR–Lasso model’s prediction
accuracy was lower than GWEN, but the mVIF value
was lower and the range of VIF values was smaller.
Compared with GWR–Lasso, GWEN seems to offer
the flexibility of choosing between slightly higher
accuracy and enduring slightly more multicollinearity.

For the spatial autocorrelation analysis, all of the
Moran’s I values calculated for the residuals were very
close to 0, which means that we did not have seriously
clustered residuals using all of the methods in this
study (Table 3). In general, the global model with
restricted variables (stepwise, EN, and Step-AIC) had
higher Moran’s I values than the local models (GWR,
GWR–Ridge, GWR–Lasso, and GWEN). In particu-
lar, GWR and GWR–Ridge, with their local property
and all thirty-five explanatory variables included, are
expected to have better ability to transmit the spatial
autocorrelation into their varying coefficients; thus,

Figure 5. Scatter plots of the measured and the predicted values of the eight models. Note: GWR D geographically weighted regression;
AIC D Akaike’s information criterion; GWEN D geographically weighted elastic net; Lasso D least absolute shrinkage and selection opera-
tor. (Color figure available online.)
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they had the lowest Moran’s I values. On the other
hand, GWR–Lasso and GWEN, with approximately
ten explanatory variables, do not have the ability to
transmit the spatial autocorrelation as much as GWR
and GWR–Ridge do. Although the comparison here is
only based on one empirical data set, the results sug-
gest that GWEN is comparable to existing methods
designed to reduce multicollinearity and handle spatial
nonstationarity similar to GWR–Lasso. GWEN has
the GWR’s advantage of improving the prediction
accuracy and the EN’s advantage of eliminating multi-
collinearity and selecting the best explanatory
variables.

Figure 6 maps the λ values of the GWEN model.
The λ value is determined by the number of explana-
tory variables selected. The larger the λ value, the
harder the regularization is needed to get the variables
trimmed to the desired number. Figure 6 shows that
locations with fewer neighbors (more isolated) gener-
ally had larger λ values, which also means that local
multicollinearities were more severe in those areas.

To evaluate the importance of each explanatory
variable in the GWEN model, one should consider
both the magnitude of the explanatory variable’s coef-
ficient in each geographical location where it is
selected and the number of geographical locations for
which the variable is selected. Thus, we propose two
measures to indicate an explanatory variable’s impor-
tance. First, the coverage of an explanatory variable k,
as defined in Equation 13, is used to show the ratio of

the number of geographical locations that use variable
k to all geographical locations.

coverage kð ÞD N¡N0

N
; (13)

where N0 is the number of data observations where the
coefficient of variable k equals 0, and N is the total
number of observations. Second, the loading of an
explanatory variable k is the mean squared value of
the nonzero coefficients of variable k, as shown in
Equation 14.

loading kð ÞD 1

N¡N0

X
bstd
ki
6¼0

bstd
ki

� �2
; (14)

where bki
std is the standardized coefficient of variable k

at geographical location i. The higher the loading of
the variable, the larger the standardized magnitude of
its coefficient in the geographical location where it is
selected and the more important it is to the response
variable at the location. In this case study, because all
of the variables were already standardized before the
analysis, bki by itself is the standardized coefficient
bki

std.
To indicate the importance of an explanatory vari-

able using a single criterion, we developed another
measure called the potency index to combine the cov-
erage and the loading, which is a product of the two

Figure 6. Lambda values of the geographically weighted elastic net model. (Color figure available online.)
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quantities, as shown in Equation 15.

Potency Index kð ÞD coverage kð Þ�loading kð ÞD 1

N

X
bki 6¼0

.bki/
2:

(15)

The potency index indicates the standardized mag-
nitude of an explanatory variable’s coefficient for
the whole study area. Table 4 shows the coverage,
the loading, and the potency index of all thirty-five
explanatory variables in the GWEN model. The
higher the coverage, the loading, and the potency
index, the more widespread and important the

variable is. Table 5 lists the top ten variables
derived from EN, stepwise, Step-AIC, GWR–Ridge,
GWR–Lasso, and GWEN using the potency index
as a criterion.

The top four variables listed in Table 5 are the same
for all six methods, with only a slight difference in
ranking for two variables (NonVehicle and Devel-
oped) between GWEN and GWR–Lasso and the other
four methods. The variables Water (percentage of area
in open water) and MedValue (median value of
owner-occupied units) were picked by four methods
but were ranked differently in those four methods.
There is a certain degree of overlap in the other
selected variables (MeanTime, Under 5, Employed).

Table 4. Coverages, loadings, and potency indexes of the explanatory variables in the geographically weighted elastic net
model

Acronym Coverage Loading Potency index Acronym Coverage Loading Potency index

Population 0.4473 0.2311 0.1034 OCST35 0.3335 0.0055 0.0018
Developed 0.6256 0.0389 0.0243 NonMtg 0.2703 0.0033 0.0009
Damages 0.3757 0.0367 0.0138 NonFuel 0.1265 0.0015 0.0002
Elevation 0.1476 0.0011 0.0002 NonKitchen 0.2486 0.0093 0.0023
Subsidence 0.4958 0.0045 0.0022 NonPlumb 0.2230 5.06E-04 0.0001
Water 0.5974 0.0103 0.0062 NonTele 0.1987 0.0017 0.0003
Employed 0.3661 0.0035 0.0013 NonVehicle 0.3770 0.0703 0.0265
OCSTNMRG 0.2102 0.0029 0.0006 Occupied 0.2716 3.12E-04 0.0001
OCSTWMTG 0.0882 0.0019 0.0002 Over65 0.4492 0.0048 0.0022
Female 0.1725 0.0013 0.0002 OwnerR 0.239 0.0017 0.0004
HighSch 0.1399 0.0017 0.0002 Poverty 0.1125 5.91E-04 0.0001
HhSize 0.122 0.0037 0.0005 Rent15 0.3342 9.28E-04 0.0003
MedValue 0.2524 0.0091 0.0023 Rent35 0.3412 9.78E-04 0.0003
Married 0.2856 0.0017 0.0005 Under5 0.4875 0.0027 0.0013
MedIcm 0.1706 0.0067 0.0011 GasWell 0.2339 0.0309 0.0072
MedRent 0.2914 0.0017 0.0005 Pipeline 0.2479 0.0025 0.0006
MeanTime 0.2658 0.0164 0.0044 Road 0.246 0.0126 0.0031
OCST20 0.3406 0.0063 0.0021

Table 5. Comparison of the top ten variables selected by GWEN (using potency index), GWR–Ridge, GWR–Lasso, elastic
net, Step-AIC, and stepwise.

Rank GWR–Ridge Stepwise Elastic net Step-AIC GWR–Lasso GWEN

1 Population Population Population Population Population Population
2 Developed Developed Developed Developed NonVehicle NonVehicle
3 NonVehicle NonVehicle NonVehicle NonVehicle Developed Developed
4 Damages Damages Damages Damages Damages Damages
5 MedValue NonPlumbing Under5 Under5 MeanTime GasWell
6 OCST20 Under5 Employed OCST20 GasWell Water
7 NonMtg Employed Water OCST35 MedValue MeanTime
8 MeanTime Pipeline HighSch Subsidence MedInc Road
9 Married Water MedRent Hhsize Water Nonkitchen
10 MedInc NonFuel NonFuel MedValue Over65 MedValue

Note: GWEN D geographically weighted elastic net; GWR D geographically weighted regression; Lasso D least absolute shrinkage and selection operator;
AIC D Akaike’s information criterion.
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Because GWEN is basically a local version of EN, the
coefficient values of the top four variables in GWEN
and EN are mapped and compared in Figures 7
through 10.

Figure 7 shows that the total population count in
each cell generally had a negative effect on popula-
tion growth. The EN model implies that this nega-
tive effect equally affects all of the geographical
units, with a coefficient of –0.7122. In contrast, the
GWEN model offers more details about the nonsta-
tionarity of this effect. In the GWEN model, this
negative impact was mainly concentrated in the
New Orleans metropolitan area as well as urban
areas north of Lake Pontchartrain. In the metropol-
itan area of Baton Rouge, the total population
count had no effects on the population changes
(coefficients close to zero). In some rural areas,
some positive effects of population count on popu-
lation growth are observed.

Figure 8 shows that the percentage of housing
units without any vehicle greatly hindered popula-
tion growth. In the EN model, this kind of imped-
ance was the same throughout the whole study area
(with a coefficient of –0.2448), whereas large vari-
ance emerged in the GWEN model. The GWEN
model shows that low population growth in the
area coinciding with low percentage of vehicle pos-
session was obvious in the New Orleans area, and
it was slightly weakened in the urban areas north

of New Orleans. The effect of the variable hardly
existed in rural areas, however.

From Figure 9, the EN results show that the per-
centage of developed land area was positively associ-
ated with population growth for the whole study area
with a coefficient value of 0.4442. The GWEN model
shows that this positive association varied greatly
across space, though. In the New Orleans area, there
was no such effect, whereas in the urban areas north of
Lake Pontchartrain, the effect was much more
obvious.

Figure 10 shows that the property damages from
natural hazards generally had a negative effect on
population growth (with an EN coefficient of
–0.2131), especially in the New Orleans area and
some other coastal areas, where hurricanes and
storm surges frequently strike (including Katrina).
The variable had an unexpectedly high negative
effect on population changes in the northwest cor-
ner of the study area, which could be due to higher
vulnerability in the area. In contrast, the damage
effect did not seem to affect other inland areas,
noting that the population data used in this study
is only up to 2010 and does not include the 2016
Louisiana floods. In the rural areas north of Lake
Pontchartrain, the damage variable seemed to have
a positive association with population growth.
Other factors such as economic opportunities might
have played a bigger role in the population growth

Figure 7. Coefficients of population count in the geographically weighted elastic net model (the elastic net coefficient is –0.7122). (Color
figure available online.)
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of the area than the damage resulting from natural
hazards.

The comparison between GWEN and EN in
Figures 7 through 10 shows that the GWEN model
not only performs better in prediction accuracy and
eliminating multicollinearity but also reveals the

nonstationarity of the explanatory variables. As
already mentioned earlier, though, the results from
comparing GWEN with all the methods used in this
study will need to be interpreted cautiously because
the comparison was not based on the best performance
of each method but rather a set of fixed parameters

Figure 9. Coefficients of developed land areas in the geographically weighted elastic net model (the elastic net coefficient is 0.4442). (Color
figure available online.)

Figure 8. Coefficients of NonVehicle in the geographically weighted elastic net model (the elastic net coefficient is –0.2448). (Color figure
available online.)
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derived semioptimally from GWEN. Comparing these
methods would pose a challenge, as some of the meth-
ods do not have the same properties as GWEN (local
and low collinearity). Moreover, a more reliable com-
parison would require comparison using more than
one real data set and possibly simulated data sets.
These are important issues that future studies should
address.

Conclusions

This study developed a new method, GWEN, which
can be used to select variables to minimize multicolli-
nearity while revealing local spatially varying relation-
ships. We can view GWEN as a two-step method: first
generating local submodels for each data observation
using a kernel function like GWR and then solving an
EN problem for each submodel using the weights from
the first step. The study also compared GWEN with
seven other regression methods using an empirical
data set. The empirical study of population changes in
the Lower Mississippi River Basin demonstrates the
properties of GWEN and its advantages over a number
of regression methods. The empirical study also reveals
four variables identified by all eight regression models
as the top predictors affecting population changes in
the study area: population count, percentage of

households with no vehicle, percentage of developed
land, and property damage by natural hazards.

This study offers a useful tool for researchers who
want to explore spatially varying relationships but
are hindered by the local multicollinearity of using
GWR or those who want to reduce the multicolli-
nearity by selecting the best set of explanatory vari-
ables for ease of interpretation but are not satisfied
with the accuracy of a global model such as EN.
This method is especially useful when the study
area is relatively large and the spatial nonstationar-
ity is significant. Future studies should examine in
greater detail the performance of GWEN and how
it compares with the other methods using both sim-
ulated and more real data sets.
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Appendix: The GWEN Algorithm

i. Determine the spatial variation of the observa-
tion’s locations and define either a global kernel
bandwidth or a global number of neighborhood obser-
vations. In the case of using a global bandwidth, start
with the user-defined tuning range and the increment
and create a set of kernel bandwidths from the mini-
mum bandwidth to the maximum bandwidth: r1,
r2, . . ., rn. In the case of using a global number of
neighborhood observations, start with the user-defined
tuning range and the increment and create a set of
number of neighbors from the minimum to the maxi-
mum: n1, n2, . . ., nn.

ii. Create a set of as using the user-defined or default
increment from 0.1 to 1: a1, a2, . . ., am.

iii. Create matrix RMSE (i, j) to document the
cross-validated RMSE of the GWEN under ai, rj.

iv. For each i D 1, . . ., n, do the following outer
loop:

For each j D 1, . . ., m, do the following middle
loop:

1. Use the user-provided or default positive integer
K to divide the observations into K groups for K-fold
cross-validation. The cross-validation process (the
inner loop or Step 2) will be repeated K times (folds),
with each of the K subgroups used exactly once as the
test (validation) data. The K results are then averaged
to produce a single accuracy estimation.

2. Using the cross-validation partitions from Step 1
(K-folds), for each observation in the training data set
(the subgroups other than the test subgroup), do the
inner loop:

a. Use ri or ni to identify the neighbors of the obser-
vation and calculate the weights for these observations
using the user-defined kernel function. Use aj and the
calculated weights to build the GWEN problem
described by Equations 8 and 9.

b. Identify the maximum value of λ, at which the
GWEN problem only gives the null solution (all of
the variables are not selected). Using the user-defined
or the default λ increment values, create a series of λ
from 0 to the maximum.

c. For each λ, use the coordinate descent algorithm
(Wright 2015) to solve the GWEN problem and docu-
ment the solution with the λ value.

d. According to the user-defined number of varia-
bles to be selected, find the solution that gives the
closest match and the related λ. Document the coeffi-
cients, the explanatory variables’ VIF values, and the
prediction residuals of this solution.

e. Use the test group and calculate the RMSE using
the coefficients derived from Step d for cross-
validation.

End the inner loop.
3. After iterating Step 2 for all of the K cross-valida-

tion partitions, average the K-fold cross-validated
RMSEs calculated from each of the partitions and set
it to RMSEij.

End the middle loop.
End the outer loop.
v. Provide the user with the matrix RMSE as a

decision support to select the bandwidth and a that
will offer the lowest cross-validated RMSE. The
coefficients, the explanatory variables’ VIF values
(Equation 11), and the prediction residuals of the
solution under the selected bandwidth and a will
be provided as the final results of running the
GWEN.
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