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ABSTRACT 
 
Nina S.-N. Lam.; Qiang, Y.; Li K.; Cai, H.; Zou, L., and Mihunov, V. 2018. Extending Resilience Assessment to 
Dynamic System Modeling: Perspectives on Human Dynamics and Climate Change Research. In: Shim, J.-S.; Chun, 
I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). 
Journal of Coastal Research, Special Issue No. 85, pp. 1401-1405. Coconut Creek (Florida), ISSN 0749-0208. 
 
It is widely known that the same type and strength of hazard could lead to very uneven impacts on different 
communities due to their varying vulnerability and resilience capacity. Hence, identifying the factors that make a 
community more resilient to hazards is critical to its sustainability and is central to climate change research and 
planning. This paper addresses three questions: what is the best way to measure community resilience to disasters and 
how to identify the key indicators? How do the resilience indicators dynamically interact in a quantitative manner that 
would lead to long-term resilience? And how can we translate the scientific results into practical tools for decision 
making? Using the population change pattern in the Mississippi River Delta as a case study, this paper demonstrates 
the use of a relatively new resilience assessment method called the Resilience Inference Measurement (RIM) method 
to measure resilience. Then, a newly developed spatial dynamic model is used to simulate population changes in the 
study area. The results show that without any changes in the current condition, the coastal portion of the study area 
will continue to suffer population loss and the region is unlikely to sustain in the future.    
 
ADDITIONAL INDEX WORDS: Community resilience assessment, coupled natural-human system modeling, 
Mississippi River Delta, population changes, coastal resilience and sustainability. 
 

 
INTRODUCTION 

 Climate change is inevitable. The 2014 Inter-governmental 
Panel on Climate Change Report reveals that extreme weather 
and climate conditions in the future are very likely (IPCC, 2014). 
These weather extremes include a decrease in cold temperature 
extremes, an increase in warm temperature extremes, an increase 
in extreme high sea levels, and an increase in the number of heavy 
precipitation events in a number of regions. These extremes 
increase the likelihood of catastrophic events, including more and 
stronger hurricanes, storm surge, flooding, and drought (Emanuel, 
2013), causing enormous impacts and revealing significant 
vulnerability of many ecosystems and human systems around the 
world. There is an urgent need to improve community resilience 
to disasters so that we can find ways to better protect communities 

and cope with these hazards in a changing climate world (Lam et 
al., 2015, 2016). 
    Humans play a pivotal role in climate change because they are 
both a casual and an impact agent. In general, we know more 
about the effects of human activities on climate change and have 
developed strategies to mitigate such effects. We also know how 
human activities can worsen the impacts from climate-related 
events, but we are less certain on the best adaptation strategies. 
For instance, despite the danger of flood risk, people may still 
choose to live in coastal areas due to many economic and other 
considerations. Dense population living in flood-prone areas, 
inadequate infrastructure planning and investment, and unwise 
land-use decisions have all made some communities more 
vulnerable to disasters and difficult to recover than others (Qiang 
et al. 2017). Understanding the interactions and feedback 
mechanisms between the natural and the human systems is critical 
to the development of effective strategies to lessen the impacts of 
climate change.  
   The objective of this paper is to introduce new approaches to 
modeling and understanding human dynamics in the context of 
climate change. Specifically, this paper focuses on the issues of 
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community resilience assessment and how it is linked to coupled 
natural-human (CNH) system modeling. The Mississippi Delta is 
used as a case study to illustrate the complex problems of low-
lying coastal regions in the world are facing and how the proposed 
methods can be applied to address the coastal resilience problem. 
The paper addresses three questions: what is the best way to 
measure community resilience to disasters and how to identify the 
key indicators? How do the resilience indicators dynamically 
interact in a quantitative manner that would lead to long-term 
resilience (i.e., sustainability)? And how can we translate the 
scientific results into tools for decision making. 

 
METHODS 

   The methods developed by this research team for resilience 
measurement and coupled natural-human system modeling are 
summarized below.  
 
Community Resilience Analysis 
   There is extensive literature in the broad field of disaster 
resilience, vulnerability, hazards, risk assessments, and 
sustainability, which spans across many disciplines (Cutter, 2015; 
Cutter et al., 2010; Norris et al., 2008). Among the various issues, 
developing tools or metrics for measuring and monitoring 
progress of resilience is considered vital to building resilience 
(National Research Council (NRC), 2012). 
   However, there are major challenges in developing useful 
resilience indices. First, there is no consensus on the definition of 
resilience, especially its relations with other similar concepts such 
as vulnerability, recovery, adaptability, and sustainability. This 
major disagreement among researchers on the definition of 
resilience has affected the measurement approaches and the 
choice of indicators to measure resilience. Second, many existing 
resilience indices were developed without objective empirical 
validation. Without empirical validation of the derived indices, it 
is difficult to justify them as a credible decision-making tool to 
monitor progress in resilience across space, time, and hazard type. 
Third, existing resilience or vulnerability assessment methods 
seldom have an inferential ability, thus the indices developed are 
only applicable to the specific study and study area. Fourth, 
existing indices seldom incorporate both social and 
environmental variables and their feedback mechanisms, which is 
necessary for understanding and evaluating long-term 
sustainability (Liu et al., 2007a, 2007b).  
    This research team recently developed the Resilience Inference 
Measurement (RIM) model to overcome the aforementioned 
problems. The RIM model uses three dimensions (hazard threat, 
damage, and recovery) to denote two relationships (vulnerability 
and adaptability) (Figure 1). If a community has high hazard 
threat but sustains low damage, then the community is considered 
to have low vulnerability. Similarly, if a community sustains high 
damage but has a favorable recovery (e.g., return of population), 
then the community is considered to have high adaptability. 
Resilience is measured based on the two relationships. K-means 
clustering is used to group the communities into four a prior 
resilience groups (usurper, resistant, recovery, susceptible) 
according to the two relationships. Discriminant analysis is then 
applied to identify the key social-environmental variables that 
best characterize each group. Discriminant analysis produces 
discriminant functions which can be used to calculate the 

posterior group membership of each community (Figure 2). If the 
predicted group memberships agree closely with the a prior group 
memberships, then the discriminant classification accuracy is 
high, meaning that the set of social-environmental variables used 
in the discriminant analysis are good predictors of the resilience 
rank of communities.  
 

 

Figure 1. The Resilience Inference Measurement (RIM) model. 
 

 
Figure 2. Flowchart of the RIM procedure (source: Cai et al., 2016). 

 
 

Tweaking Science into Practice 
    To make the RIM model results easier to use and understand, 
two extensions can be conducted. First, we can convert the 
discrete resilience categories into continuous resilience scores 
using Equation 1 (Cai et al., 2016; Mihunov et al., 2017):  
   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ 𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖)𝑚𝑚

𝑖𝑖=1      (1)                                                           
where m is the number of resilience groups from k-means 
clustering, 𝑖𝑖 refers to the resilience group, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖) denotes 
the posterior probability of a community belonging to resilience 
group 𝑖𝑖. For example, if a community’s probabilities of belonging 
to group 1 to 4 are 0.7, 0.2, 0.1, and 0.0, respectively, then its 
ReScore is (1x0.7)+(2x0.2)+(3x0.1)+(4x0.0)=1.4. 
    Second, an ordinary least squares (OLS) regression analysis 
between the RIM scores and the social-environmental variables 
identified by discriminant analysis can be conducted. If the 
regression model yields a high R2 value, then it can be used as a 
simplified policy tool to evaluate the importance of the variables 
in contributing to the resilience scores based on their regression 
coefficients.  
    The RIM model provides a methodological framework where 
individual dimensions can be modified to fit into different 
problem settings. The model has been successfully applied to 
assess community resilience to various hazards (coastal, drought, 
earthquake) and in different regions to extract key socioeconomic 
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variables that affect resilience (Cai et al., 2016; Lam et al., 2015, 
2016; Li K et al. 2015; Li X et al. 2016; Mihunov et al., 2017). 
 
Coupled Natural-Human Dynamic Modeling 
    The community resilience assessment discussed above focuses 
on what is the best way to measure community resilience, and it 
is a snapshot, static assessment of the condition of resilience. To 
understand how the various resilience variables interact that 
would lead to resilience, we need to model the dynamics of 
resilience, and using a coupled natural-human system approach is 
necessary (Liu et al., 2007a, 2007b).  Two commonly used spatial 
modeling tools to model system complexity are cellular automata 
(CA) (Clarke & Gaydos, 1998; Qiang and Lam, 2015) and agent-
based modeling (ABM) (An, 2012). 
   A CA model uses cells with different states as the modeling 
units, and defines the rules for updating the states over time with 
consideration of the neighborhood effects. In a CA model, each 
cell has a size, state, space, and neighborhood. The dynamics is 
controlled by a set of CA rules according to its previous state and 
its neighbor cells’ previous states. In some CA models, the cells 
can have mobility with certain defined site-exchange rules (Li and 
Lam, 2018). 
    ABM uses agents to simulate the behavior of a complex system. 
There is no universal agreement of the definition of the term 
“agent” in ABM, but some common characteristics of ABMs are: 
agents have the ability to change their physical locations and 
modify their attributes, agents can actively sense the environment 
conditions and respond accordingly, and agents can interact with 
other agents within their perspectives. A recent review of ABM 
for CNH modeling shows that there are indeed a variety of ABMs 
developed by different researchers, making cross-fertilization 
between models difficult (An, 2012). While ABMs are most 
applicable to model individual decisions, their application to 
large-scale system modeling is limited due to the lack of 
individual-level data. In the following, we demonstrate a spatial 
dynamics model which incorporates CA and some properties of 
ABM to model population changes in a vulnerable coastal 
environment such as the Mississippi River Delta. 
 
Study Area 
    The study area, broadly recognized as the Lower Mississippi 
River Basin (LMRB), is located in southeastern Louisiana and 
extends from the parishes (i.e., counties) north of Lake 
Pontchartrain to the coast (Figure 3). We consider Lake 
Pontchartrain as an approximate boundary where areas north of it 
are called the “North” (inland areas), whereas areas south of it are 
labeled as the “South” (coastal areas). Over the years, the South 
has endured multiple threats such as land loss, subsidence, sea-
level rise, flooding, hurricanes, and oil spills. The disappearing 
land is a critical problem, and drowning of the Mississippi Delta 
is plausible due to insufficient sediment supply and high rate of 
regional sea level rise (> 9mm/year) (Blum and Roberts, 2009). 
At the same time, we observe a trend of steady population growth 
in the North since 1990s, in contrast with a steady decline in the 
South surrounding New Orleans. The trend seems to accelerate 
after Hurricane Katrina (Qiang and Lam, 2016). Thus a pressing 
question facing the communities is: has southern coastal 
Louisiana reached the tipping point where it may be too costly to 
sustain? Can we capture, quantify, and explain these changes 

using a CNH system model? And, what are the implications for 
mitigation and adaptation planning?   
    

 
Figure 3. The study area – the Lower Mississippi River Basin (LMRB). 

 

    
Figure 4. The coupled natural-human system framework for the LMRB. 

 
 
    Because of its economic, social, and cultural significance, 
many researchers and agencies have conducted studies on the 
region using various approaches (CPRA, 2017). However, 
surprisingly a system-level study that incorporates both natural 
and human systems has yet to be conducted. With funding from 
the U.S National Science Foundation, this research team launched 
a project to examine the coastal sustainability problem in the 
study area using a CNH approach. Figure 4 shows the CNH 
framework for the entire project, which includes components 
from both the natural and the human systems and their feedback 
links. This paper summarizes the results of a resilience 
assessment and a spatial dynamic modeling study to illustrate the 
extension of community resilience assessment from static to 
dynamic. The data period was 2000-2010.  

 
RESULTS  

    The RIM model was applied to assess the community resilience 
level of LMRB using census block group as the unit of analysis 
(Cai et al., 2016). There were 2,086 block groups in 2010. A total 
of 25 variables were selected to represent the social, economic, 
infrastructure, cultural, and environmental sectors for the 
discriminant analysis. Results show that during 2000-2010, a total 
of 420 coastal hazard events severely affected the study area, 
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causing over 50 billion dollars of property damages. Population 
change was chosen as an indicator of recovery. Block groups with 
the highest population increase were mostly in the North, while 
several block groups in the South (Plaquemines Parish) along the 
coastline lost all the population in 2010. This area also suffered 
the highest level of hazard threat and had high land subsidence 
and land loss. 
   Stepwise discriminant analysis yielded a classification accuracy 
of 73.1% and selected 11 variables that best characterized the 4 
resilient groups. The 11 variables were: percent housing units 
with telephone service, percent female-headed households, 
percent population living in poverty, median household income, 
percent population employed in construction and transportation, 
percent housing units built after 2000, housing density, road 
density, percent population native born, mean subsidence rate, 
and percent area in inundation zone. In terms of geographical 
pattern, block groups with higher resilience were found generally 
in the North, whereas lower-resilience communities were located 
mostly along the coastline and in lower-elevation area (Figure 5). 
The regression between the continuous RIM scores and the 11 
variables yielded a R2 value of 0.89, suggesting that the final 
regression model could be used as a simplified decision-making 
tool to evaluate the relative importance of the 11 variables in the 
final resilience scores.  
     

 

 
 
Figure 5. Continuous RIM scores map, the higher the scores, the more 
resilience (source: Cai et al., 2016).  

 
 
   Extending static resilience analysis to dynamic modeling of 
resilience requires many new steps (Li and Lam, 2018). First, the 
study area was converted into 3 km x 3 km grids as the modeling 
units (a total of 5,890 grids). Second, a volume-preserving areal 
interpolation technique was used to transform all the data into the 
same grid platform. A total of 33 variables were selected for the 
analysis, many of which were the same as those used in the 
previous resilience assessment study. Third, an Elastic Net model 
was applied to extract 12 variables from the set of 33 to develop 
a utility function to capture the major social-environmental 
variables that affected population changes. Fourth, a genetic 
algorithm was applied to calibrate the neighborhood effects. 
Finally, a system dynamic model was built to simulate population 
changes in the study area. 

   The resultant system dynamic model is governed by three 
equations, each specifying a state variable (population count, 
developed area percentage, and utility) in time t+1 as a function 
of the same variable in time t plus other influencing variables. 
Due to space limitation here, only the final model is shown in 
Figure 6. A Monte Carlo simulation was used to analyze the 
uncertainty of the model outcome. The accuracy assessment 
shows that the model slightly over-predicts the population count 
and developed area in 2010. A simulation of population change 
from 2010 to 2050 was conducted, and their trajectories was 
evaluated using the resilience framework. It was found that areas 
in the South continue to suffer population loss whereas areas in 
the North continue to have steady population growth. In other 
words, without mitigation and adaptation or any changes in the 
current condition, the areas in the South will unlikely be 
sustainable.    
  

 

 
Figure 6. The spatial dynamic model of LMRB (source: Li and Lam, 
2018). 

 
 

DISCUSSION 
   Despite many investigations on coupled natural and human 
systems, few studies have actually attempted in quantifying the 
feedback relationships in a real-world setting. Modeling the 
dynamics of a real CNH system is complex and challenging. First, 
incorporating all the major components from both natural and 
human systems is difficult, thus the system models developed are 
seldom able to replicate the real condition. Second, modeling the 
dynamics require data collected at multiple spatial and temporal 
scales, validation of the model results is difficult without 
appropriate fine-scale subsystem analysis to support the 
validation. Third, the scales of operation of the natural and the 
human processes are very different, incorporating them into a 
single system requires assumptions, interpolation, and 
manipulation that often lead to errors and uncertainties.  
 

CONCLUSIONS 
   Disaster resilience is a pressing global concern, and solution of 
which undoubtedly requires collaboration across a wide spectrum 
of society, including researchers from various disciplines, policy 
makers, community stakeholders, first responders, and citizens. 
Through studying the population change pattern in the Lower 
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Mississippi River Basin, this paper has demonstrated that the 
Resilience Inference Measurement (RIM) model can assess 
resilience and extract key resilience variables. Unlike many 
existing resilience assessment methods, the RIM method has the 
validation and inferential properties. The RIM model can further 
be tweaked and simplified through a regression analysis so that it 
can be used as a practical science-based decision-making tool. 
   A spatial dynamic model was developed to examine how the 
resilience indicators interact dynamically that would lead to 
population changes and ultimately sustainability in the study area. 
Extending static resilience assessment analysis to dynamic 
resilience analysis is necessary to understand the underlying 
processes leading to resilience. Based on the model simulation 
results from 2010-2050, this paper shows that without any 
changes in the current condition, the lower Mississippi River 
Delta region will continue to suffer population loss and the region 
is likely to sustain.  
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