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A B S T R A C T   

A growing number of studies report associations between air pollution and COVID-19 mortality. Most were 
ecological studies at the county or regional level which disregard important local variability and relied on data 
from only the first few months of the pandemic. Using COVID-19 deaths identified from death certificates in 
California, we evaluated whether long-term ambient air pollution was related to weekly COVID-19 mortality at 
the census tract-level during the first ~12 months of the pandemic. Weekly COVID-19 mortality for each census 
tract was calculated based on geocoded death certificate data. Annual average concentrations of ambient par-
ticulate matter <2.5 μm (PM2.5) and <10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3) over 2014–2019 
were assessed for all census tracts using inverse distance-squared weighting based on data from the ambient air 
quality monitoring system. Negative binomial mixed models related weekly census tract COVID-19 mortality 
counts to a natural cubic spline for calendar week. We included adjustments for potential confounders (census 
tract demographic and socioeconomic factors), random effects for census tract and county, and an offset for 
census tract population. Data were analyzed as two study periods: Spring/Summer (March 16-October 18, 2020) 
and Winter (October 19, 2020–March 7, 2021). Mean (standard deviation) concentrations were 10.3 (2.1) μg/m3 

for PM2.5, 25.5 (7.1) μg/m3 for PM10, 11.3 (4.0) ppb for NO2, and 42.8 (6.9) ppb for O3. For Spring/Summer, 
adjusted rate ratios per standard deviation increase were 1.13 (95% confidence interval: 1.09, 1.17) for PM2.5, 
1.16 (1.11, 1.21) for PM10, 1.06 (1.02, 1.10) for NO2, and 1.09 (1.04, 1.14) for O3. Associations were replicated 
in Winter, although they were attenuated for PM2.5 and PM10. Study findings support a relation between long- 
term ambient air pollution exposure and COVID-19 mortality. Communities with historically high pollution 
levels might be at higher risk of COVID-19 mortality.   

1. Introduction 

Since the emergence of severe acute respiratory syndrome corona-
virus 2 (SAR-CoV-2), the virus that causes the novel human coronavirus 
disease 2019 (COVID-19), there have been over 4.1 million reported 
deaths worldwide with over 600,000 in the United States, as of July 
2021 (Dong et al., 2020). In the first year of the COVID-19 pandemic, 
multiple surges of COVID-19 cases and deaths have occurred (Dong 
et al., 2020). In the United States, the late Fall and Winter months 
(November through March) witnessed the highest rates of COVID-19 

mortality (Dong et al., 2020). It is important to understand how risk 
factors associated with COVID-19 disease severity and mortality may 
change over the course of the pandemic and during different points in 
the year. This could reflect differences in weather and human behavioral 
patterns as well as intervention policies, testing accessibility, hospital 
conditions, available treatments and vaccinations, and virus variants. 
Such data are necessary in preparing for the next surge and mitigating 
the adverse impact of COVID-19 mortality risk factors, especially in the 
case where this becomes an endemic disease. 

Among modifiable environmental risk factors, long-term exposure to 
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air pollution has risen as a possible risk factor for increased COVID-19 
disease severity and mortality (Katoto et al., 2021; Ali and Islam, 
2020; Wu et al., 2020; Lopez-Feldman et al., 2021; Tchicaya et al., 2021; 
Liang et al., 2020; Konstantinoudis et al., 2021; Hutter et al., 2020; 
Dettori et al., 2021; Copat et al., 2020; Domingo et al., 2020). Associa-
tions between long-term exposure to air pollution and mortality are well 
documented (United States Environmental Protection Agency, 2020; 
United States Environmental Protection Agency, 2019) and there are 
several proposed mechanisms by which long-term air pollution exposure 
may increase the risk of COVID-19 mortality, including alterations in 
inflammatory and immune response and contributing to the develop-
ment of chronic diseases that leave individuals more vulnerable to 
COVID-19 disease (Domingo et al., 2020; Bourdrel et al., 2021; Woodby 
et al., 2021; Comunian et al., 2020). Due to a needed rapid response to 
the global public health emergency most of the early publications 
assessed only correlation between long-term air pollution exposure and 
COVID-19 mortality without consideration of important potentially 
confounding factors—such as population size and density and socio-
economic variables (Copat et al., 2020). Confounding factors that relate 
with air pollution exposure and are also risk factors for COVID-19 
mortality (e.g., through mechanisms effecting disease incidence, 
severity, and mortality) and are a concern because they can lead to 
spurious associations between exposure and outcome. There have been a 
few studies that do try to control for potential confounding factors. 
Among these higher COVID-19 mortality has been associated with 
long-term nitrogen dioxide (NO2) (Liang et al., 2020; Konstantinoudis 
et al., 2021; Hutter et al., 2020), and particulate matter <2.5 μm (PM2.5) 
(Wu et al., 2020; Lopez-Feldman et al., 2021; Tchicaya et al., 2021; 
Liang et al., 2020; Konstantinoudis et al., 2021) and <10 μm (PM10) 
(Hutter et al., 2020; Dettori et al., 2021) in studies from across the globe. 
Most studies, however, were conducted using data from the first few 
months of the pandemic or relied on county or regional level aggregate 
death which disregard important local variability. 

The objective of this study was to examine the association between 
COVID-19 mortality rates and estimates of long-term exposure to PM2.5, 
PM10, NO2, and ozone (O3) at the census tract level for California—a 
state with amongst the highest number of COVID-19 deaths in the 
United States. Use of census tracts as the geographical unit allowed for 
more careful control of potentially confounding factors and thus better 
inference, compared with, for example, county-level analyses. Most 
census tracts are less than 2 square miles (52 ha) in size and have 2500 to 
8000 residents. The study was conducted using data from March 2020 to 
March 2021, separated into two study periods bisected in mid-October 
before the large Winter surge. This enabled us to evaluate whether air 
pollution findings could be replicated in both study periods. We chose as 
the outcome weekly census tract COVID-19 mortality, which were 
aggregated from death certificate data. Use of weekly mortality rates 
allowed us to more carefully take into account and control for different 
temporal patterns in the pandemic trajectory across the state (e.g., 
steeper or flatter epidemic curves, different overall pandemic trajectory 
patterns, etc.). Differences in pandemic trajectory patterns were 
important to account for since factors for these differences may also 
relate to long-term air pollution levels and confound pollution effect 
estimates. Potential confounding variables at the census tract and 
county level were also considered in our models and a number of 
sensitivity analyses were conducted. 

2. Methods 

2.1. Research setting, sample, and data 

We examined COVID-19-related mortality in the state of California. 
We used the California Comprehensive Death Files from the California 
Department of Public Health, Center for Health Statistics and Infor-
matics for 2020 and 2021. Data were updated weekly, and the last date 
of data export used in this analysis was May 15, 2021. To improve 

completeness of mortality data, we applied a nine-week buffer, given the 
usual lag in administrative mortality files. As such, the latest death date 
in this analysis was March 7, 2021. Data on causes of death and de-
cedent’s residential information, including census tract, were used in 
this analysis. This study was approved by the Committee for the Pro-
tection of Human Subjects of the state of California. 

2.2. Assessment of COVID-19 mortality 

Details of our COVID-19 mortality assessment method have been 
previously published (Garcia et al., 2021). Briefly, we used an internally 
developed algorithm to identify COVID-19-related deaths using the new 
International Statistical Classification of Diseases and Related Health 
Problems code for COVID-19 (U07.1) and a keyword search of variables 
related to immediate and underlying causes of death or other significant 
conditions that contributed to death. We applied this algorithm to all 
deaths occurring after February 1, 2020. Residential data on death 
certificates were used to assign residential census tracts for decedents. 
COVID-19 deaths occurring among residents in each census tract were 
aggregated to the weekly level. To align with the onset of the COVID-19 
pandemic in California, we began our analyses on March 16, 2020, the 
first week when a county had either five deaths or 0.5 deaths per 100, 
000 population within a seven-day window. 

2.3. Assessment of air pollution 

Ambient PM2.5, PM10, NO2, O3 for all California census tracts were 
based on data from the ambient air quality monitoring system obtained 
from the US Environmental Protection Agency’s Air Quality System for 
January 1, 2014–December 31, 2019. The air monitoring network in 
California is one of the most extensive in the U.S. with over 200 loca-
tions. 24-hour average PM2.5, PM10, and NO2 concentrations and daily 
maximum 8-h average O3 concentrations were included. Daily pollutant 
concentrations at the center of census tracts were estimated using in-
verse distance-squared weighting of observations from up to four nearby 
(<50 km) monitoring locations (Wong et al., 2004). Annual mean con-
centrations were calculated for each year, and then averaged across all 
six years (2014–2019) as an estimate of long-term air pollution expo-
sure. All Federal Reference Method and Federal Equivalent Method data 
were included except those collected at near-road sites (located within 
50 m of a freeway) which represent very small areas. Leave-one-out 
evaluation of the method in California indicated small biases (<0.7 
ppb and <0.5 μg/m3) and acceptable mean errors (<35%) (Eckel et al., 
2016). 

2.4. Covariates 

Census tract sociodemographic characteristics were obtained from 
the American Community Survey 2014–2018 5-year Estimates, 
including: race/ethnicity (non-Hispanic Black, non-Hispanic Asian, and 
Hispanic any race), age (percent over age 65 years), sex (percent male), 
population, population density (persons per square mile), public transit 
use for commuting (percent of workers 16 years and over taking public 
transportation to work), housing with severe overcrowding (percent of 
housing units with over 1.5 persons per room (Blake et al., 2007)). We 
included the 2015 Social Deprivation Index (SDI) to account for differ-
ences in neighborhood socioeconomic variability that may affect 
COVID-19 mortality risk. SDI utilizes seven demographic characteristics 
from the American Community Survey to reflect social inequalities by 
census tract (I at the County Level., 2015). 

County-level data on COVID-19 test positivity was used to reflect 
infection levels and spread. Testing data was obtained from the Cali-
fornia Department of Public Health (StatewideD-19 Cases, 2021). Test 
positivity was calculated based on the number of positive tests out of the 
total administered tests recorded by county. Daily values were averaged 
to produce mean weekly test positivity values to match the temporal 
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resolution of our analysis. We applied a 2-week lag to reflect test posi-
tivity two weeks prior to when the COVID-19 deaths occurred. In the 
United States starting in December 2020, COVID-19 vaccines (first Pfizer 
and later Moderna, and Johnson & Johnson) became available to select 
individuals including healthcare and frontline employees, and then 
became increasingly available to various at-risk groups through March 
2021 (National Center for Immun, 2021). Daily cumulative county-level 
vaccination data were obtained from the California Department of 
Public Health (StatewideD-19 Vaccin, 2021). Cumulative counts of 
people with at least one vaccine dose and fully vaccinated individuals 
were used in tandem with total county populations to produce two 
variables quantifying percent of county population with vaccine 
administration. For days in which no doses were administered in a given 
county, the last cumulative vaccination value was carried forward. Prior 
to December 15, 2020 (the first day of vaccination data), we assumed 
zero vaccinations. Measures of cumulative vaccination were matched 
using the day immediately prior to the start of the index week of 
COVID-19 deaths. 

2.5. Data analysis 

Data were analyzed as two study periods: Spring/Summer (March 16 
- October 18, 2020) and Winter (October 19, 2020–March 7, 2021). The 
introduction of vaccine administration and differences between Winter 
2020–2021 and Spring/Summer 2020 mortality motivated the partition 
of study periods. A negative binomial mixed model was used to assess 
the relationship between weekly census tract COVID-19 mortality and 
pollutants PM2.5, PM10, NO2, and O3, adjusting for potential confound-
ing variables, with each exposure being modeled separately. Mortality 
was modeled through weekly census tract COVID-19 deaths offset by 
census-tract population. Census tracts with zero total population were 
excluded from analysis. Pollutants were mean-centered and scaled to a 
one standard deviation change so that estimated effects were for a one 
standard deviation change in long-term pollution exposure. The variable 
for calendar week was centered at the mode of the weeks with the 
highest numbers of deaths at the county-aggregated level: July 27 - Aug 
2, 2020 for Spring/Summer and Jan 4 - Jan 10, 2021 for Winter. To 
account for differences in deaths over time, a natural cubic spline for 
calendar week was included. Optimal number of degrees of freedom in 
the natural cubic spline were assessed separately for each study period 
and determined by AIC and BIC, resulting in 7◦ for Spring/Summer and 
6◦ for Winter. To model differences in the pandemic trajectory across the 
state random intercepts were included at the county- and census tract- 
level. To allow for greater flexibility in the modeled pandemic trajec-
tory by county, we applied uncorrelated random slopes on time, using 
spline basis functions, at the county-level. Continuous covariates were 
mean-centered and scaled to a one standard deviation change, with the 
exception of two covariates: SDI remained on its original scale and 
population density was log-transformed. Models generally followed the 
form of: 

ln E
(
yijk

)
= β0 + u0i + u0ij + β1Pollutantij +

∑w

k=1

×
∑df

b=1

{(
γb + u1i, b

)
× nsb,k

}
+ ... + ln

(
populationij

)

where. 
yijk is the COVID-19 death count for county i, census tract j, week k, 
u0i and u0ij are random intercepts at the county and census tract- 

level, respectively, 
nsb,k represents the basis functions for natural cubic splines on time, 

with b indexing a specific basis function (from 1 to the degrees of 
freedom [df] specified) evaluated at week k. 

“ …” represents additional terms for covariates, to control for 
confounding. 

Inclusion of the offset for census tract population, ln(populationij), 
produces a model for the rate of mortality rather than mortality count. 

We first present a crude analysis of pollution and COVID-19 mor-
tality, and then a fully adjusted analysis that controls for additional 
potentially confounding variables. Crude models include the pollutant, a 
fixed effect of time (smooth), random intercepts for county and census 
tract, random slopes on time by county, and a census tract population 
offset. Fully adjusted models additionally include the following census- 
tract covariates: percent aged 65 years and over, percent non-Hispanic 
Black, non-Hispanic Asian, and Hispanic individuals of any race, SDI, 
and a log-transformed population density variable. Several sensitivity 
analyses were then conducted: inclusion of additional census-tract 
covariates as potential confounders, stricter classification of COVID-19 
death, internal geocoding of residential census tract, varying windows 
of long-term pollutant exposure profiles, and the addition of a zero- 
inflation component to models. Additional census-tract covariates 
investigated in sensitivity analyses include percent male, a categorical 
fixed effect for contiguous counties grouped into 11 regions, percent 
taking public transit for work, percent living in housing with severe 
overcrowding, and 2-week lag county COVID-19 test positivity rate. 
Sensitivity analyses for the Winter also included further adjustment for 
county vaccination percentages. Stricter classification of COVID-19 
deaths excluded any deaths where COVID-19 was only recorded under 
“other significant condition” and was not listed as an immediate or 
underlying cause of death. We also reran mortality models using inter-
nally geocoded census tract information, geocoded using the Texas A&M 
University geocoder (https://geoservices.tamu.edu/Services/Geocode/ 
), in lieu of the census tract reported on death certificates. In addition 
to 6-year pollutant concentration averages, 4-year, 2-year, and 1-year 
averages were also analyzed. To evaluate zero inflation, we examined 
the ratio of predicted to observed zeros and found no evidence for excess 
zeros (ratios were: ~1.00001 for Spring/Summer models and ~0.997 
for Winter models). Nonetheless, we included in the sensitivity analysis 
a model allowing for zero-inflation as a smooth function of time. All 
analyses were conducted in R version 4.0.4 (R Core Team, 2021) (R: A 
language and environ, 2021). 

3. Results 

There were 8012 census tracts with non-zero populations with 
weekly mortality data available for analysis. Among these census tracts, 
there were a total of 58133 COVID-19 deaths, including 16133 in the 
Spring/Summer and 42000 in the Winter. Due to missing pollutant 
exposure assessment information, 7940 census tracts were included in 
the analysis for PM2.5, 7012 for PM10, 7763 for NO2, and 7956 for O3. 
Distribution of sociodemographic characteristics among census tracts 
are shown in Table 1. 

Distributions for estimated long-term air pollution concentrations 
are shown in Fig. 1. Mean (standard deviation) concentrations were 10.3 
(2.1) μg/m3 for PM2.5, 25.5 (7.1) μg/m3 for PM10, 11.3 (4.0) ppb for 
NO2, and 42.8 (6.9) ppb for O3. 

Plots of observed versus predicted weekly census tract COVID-19 
mortality aggregated to the county (Fig. 2 and S1) demonstrate the 
distinct temporal patterns of the pandemic’s progression across the 
state. Fig. 2 shows only the 10 counties with the highest COVID-19 
mortality for more decipherability; all counties are shown in 
Figure S1. Predicted mortality were based on models with smooth of 
calendar week, random intercepts for county and for census tract, and 
random slope on smooth of calendar week for county, with an offset for 
census tract population. 

Results for crude and fully adjusted models for the Spring/Summer 
study period are shown in Table 2. Crude models indicated positive 
relations between weekly census tract COVID-19 mortality and long- 
term PM2.5, PM10, and NO2 concentrations. Effect estimates remained 
positive, but were attenuated, in fully adjusted models accounting for 
potentially confounding variables. Per each standard deviation increase 
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in long-term air pollutant concentration, the adjusted rate ratios (aRR) 
for weekly COVID-19 mortality during the Spring/Summer study period 
were 1.13 (95% confidence interval [CI]: 1.09, 1.17) for PM2.5, 1.16 
(95%CI: 1.11, 1.21) for PM10, and 1.06 (95%CI: 1.02, 1.10) for NO2. 
This means, for example, a census tract that was otherwise similar but 
had 2.1 μg/m3 higher PM2.5 (one standard deviation) was estimated to 
have a 13% (95%CI: 9%, 17%) higher COVID-19 mortality rate. Results 
for O3 indicated an inverse association in the crude model, but after 
accounting for potentially confounding variables in the fully adjusted 
model a positive association was observed (aRR = 1.09; 95%CI: 1.04, 
1.14)—this change in effect estimate was largely driven by adjustment 
for SDI. For all pollutants, results of the sensitivity analyses—including 
additional adjustment for potential confounding variables, a stricter 
definition of COVID-19 mortality, internal geocoding, and zero-inflated 
models—were generally similar to those observed for the fully adjusted 
models (Table S1). To resolve convergence issues for zero-inflated 
models, the negative binomial (conditional) models did not include 
random slopes for time in both study periods; main model results were 
similar when random slopes were not included (data not shown). Results 

for Spring/Summer analyses using four-, two-, and one-year annual 
average pollution concentrations were also generally similar to the fully 
adjusted model results (Table S1). The robust positive associations for 
the four pollutants were replicated in the Winter study period analysis, 
although the effect estimates for PM2.5 and PM10 were attenuated 
(Table 2). Per each standard deviation increase in long-term air 
pollutant concentration, the aRR for weekly COVID-19 mortality during 
the Winter study period was 1.06 (95%CI: 1.03, 1.08) for PM2.5, 1.07 
(95%CI: 1.04, 1.10) for PM10, 1.05 (95%CI: 1.02, 1.08) for NO2, and 
1.09 (95%CI: 1.06, 1.13) for O3. Effect estimates for the Winter study 
period were generally similar to the fully adjusted model results for all 
sensitivity analyses, including adjustment for county-level population 
vaccination percentage (Table S2). 

4. Discussion 

In this study of COVID-19 mortality and long-term air pollution 
exposure, we found weekly census tract COVID-19 mortality rates to be 
associated with long-term exposure to PM2.5, PM10, NO2, and O3 during 
both the Spring/Summer and Winter study periods. Associations were 
similar for NO2 and O3 in both study periods but were attenuated for 
PM2.5 and PM10 in the Winter analysis compared with the Spring/ 
Summer results. Findings were robust in sensitivity analyses. 

Since the beginning of the COVID-19 pandemic, there have been 
several studies published on the associations between long-term air 
pollution and COVID-19 mortality; however, many of these studies did 
not control for potential confounding factors, such as population size or 
demographics (Katoto et al., 2021; Ali and Islam, 2020; Copat et al., 
2020; Domingo et al., 2020). Among studies with some consideration of 
potentially confounding variables, several have reported positive asso-
ciations between COVID-19 mortality and long-term air pollution con-
centrations, primarily PM2.5 and NO2. In a U.S. county-level study using 
mortality data through June 18, 2020, Wu and colleagues reported 
2000–2016 average concentrations of PM2.5 to be associated with 
COVID-19 mortality rates: mortality rate ratio = 1.11 (1.06, 1.17) per 1 
μg/m3 in a model adjusting for 20 county-level covariates (Wu et al., 
2020). In another U.S. county-level study, using data through July 17, 
2020 and evaluating multiple air pollutants, Liang and colleagues re-
ported positive associations for COVID-19 mortality with 2010–2016 
average concentrations of PM2.5 (effect estimate = 1.19 [1.04, 1.37] per 
2.6 μg/m3) and NO2 (effect estimate = 1.17 [1.10, 1.25] per 4.6 ppb), 
and null associations for O3 (effect estimate = 1.00 [0.93, 1.08] per 3.3 
ppb) (Liang et al., 2020). In models with all three pollutants, the effect 
estimate for NO2 remained similar (1.16 [1.09, 1.24]) while the PM2.5 
effect estimate slightly attenuated (1.15 [1.00, 1.32]). These analyses 
adjusted for state- and county-level covariates and included a random 
intercept for each state (Liang et al., 2020). A study based in England 
using data through June 30, 2020 reported associations with 2014–2018 
average concentrations of NO2 and PM2.5 (Konstantinoudis et al., 2021). 
The associated increase in COVID-19 mortality risk was 0.5% (95% 
credible interval: − 0.2%, 1.2%) per 1 μg/m3 (0.487 ppb) NO2 and 1.4% 
(95% credible interval: 2.1%, 5.1%) per 1 μg/m3 PM2.5, in models 
adjusting for confounding and spatial autocorrelation (Konstantinoudis 
et al., 2021). A study from Mexico City using individual-level data 
through October 7, 2020 reported the probability of dying from 
COVID-19 increased by 0.77 percentage points per increase of 1 μg/m3 

in 2000–2018 average PM2.5 concentration, adjusting for individual- 
and municipal-level covariates (Lopez-Feldman et al., 2021). In Vienna, 
Austria using data through April 21, 2020, increased COVID-19 mor-
tality was associated with high levels of 2019 annual average NO2 
(hazard ratio = 1.72 [1.02, 2.90] for pollution above 30 μg/m3 [14.6 
ppb]) and PM10 (hazard ratio = 1.49 [0.73 3.08] for pollution above 20 
μg/m3) (Hutter et al., 2020). A study from Italy using data through June 
3, 2020 found PM10, but not PM2.5 or NO2, to be associated with prov-
inces’ Standardize Mortality Ratios (coefficient = 0.15 [0.06–0.23]) 
(Dettori et al., 2021). A recent study from France using data through 

Table 1 
Distribution of sociodemographic characteristics among 8012 California census 
tracts under study.  

Characteristic Mean Standard 
Deviation 

Median 25th – 75th 
percentile 

Percent over age 65 years 14.4 8.1 12.9 9.2, 17.8 
Percent non-Hispanic Asian 13.5 15.4 8.0 2.9, 17.8 
Percent non-Hispanic Black 5.6 8.7 2.6 0.8, 6.6 
Percent Hispanic any race 37.9 26.5 30.8 15.4, 57.9 
Social Deprivation Index 58.8 29.2 63 35, 85 
Population 4886.3 2210.9 4618 3481.75, 

5915.5 
Population density 8718.0 9709.2 6458.5 2730.6, 

11095.1 
Percent male 49.7 5.0 49.4 47.4, 51.5 
Percent of workers 16 years 

and over taking public 
transportation to work (n =
7992) 

5.1 7.8 2.3 0.7, 5.9 

Percent of housing units with 
over 1.5 persons per room 
(n = 7981) 

3.2 4.6 1.6 0.4, 4.3  

Fig. 1. Violin plots demonstrating distributions of 2014–2019 mean annual 
concentrations for PM2.5, PM10, NO2, and O3 across California census tracts 
included in the study. The width of the curve corresponds to the frequency of 
the data across pollutant concentrations. Each violin plot also contains a box 
plots showing the median (bar), interquartile range (box), and outlier (dots) 
concentrations for each pollutant. 
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December 2020 reported long-term (1999–2016) PM2.5 concentration to 
be associated with increased COVID-19 mortality, but effect estimates 
attenuated in later Fall/early Winter months (Nov–Dec) (Tchicaya et al., 
2021)—similar to the attenuated PM2.5 associations observed in our 

study during the Winter study period. It is important to note that some 
studies have also reported null or mixed mortality associations for 
long-term air pollution (Valdés Salgado et al., 2021; Berg et al., 2021). 
Overall, the present study provide additional evidence—consistent with 
the growing body of literature—of associations between COVID-19 
mortality with PM2.5 and NO2 and provide support for novel associa-
tions with PM10 and O3, not only during the first few months of the 
pandemic, but also during the larger third Winter wave experienced in 
California. 

Studies have reviewed possible mechanisms by which air pollution 
exposure may affect COVID-19 severity and mortality (Bourdrel et al., 
2021; Woodby et al., 2021; Comunian et al., 2020). Mechanisms for 
short-term versus long-term air pollution exposure are likely different, 
and we focus our discussion on possible mechanisms relating to 
long-term exposure. It is well-documented that exposure to ambient air 
pollution increases the risk of several chronic health conditions, 
including respiratory, cardiovascular, and metabolic diseases (Hoek 
et al., 2013; Feigin et al., 2016; Cohen et al., 2017; Yang et al., 2019; Eze 
et al., 2015; Chen et al., 2014), and individuals with these co-morbidities 
are at higher risk of severe COVID-19 disease and mortality (Singh et al., 
2020; Ssentongo et al., 2020; Goodman et al., 2020). Thus air pollution 
may affect COVID-19 mortality risk by contributing to health conditions 
that then increase an individual’s risk of mortality. Exposure to air 
pollution can induce oxidative stress, increasing systemic inflammation 
and effect inflammatory and adaptive immune response (Bourdrel et al., 
2021; Woodby et al., 2021). Altered inflammatory and immune 
response, including suppressed antiviral adaptive responses, may then 
promote COVID-19 incidence and increase risk of disease severity and 
mortality (Bourdrel et al., 2021; Woodby et al., 2021). Air pollution is 
associated with chronic rhinitis and rhinosinusitis—conditions which 
might allow for easier penetration of the SARS-CoV-2 virus by increasing 
airway mucosal permeability (Bourdrel et al., 2021; London et al., 2018; 

Fig. 2. Observed (dashed lines) versus predicted (solid line) weekly COVID-19 mortality for selected counties during the Spring/Summer (panels 1 A and 1 B) and 
Winter (panels 2 A and 2 B) study periods. Counties shown are those with the highest COVID-19 mortality. Predictions were based on models of weekly census tract 
COVID-19 mortality as a function calendar week (natural spline with degrees of freedom = 7 [Spring/Summer] or 6 [Winter]), random intercepts for county and for 
census tract, and random slope on smooth of calendar week for county, with an offset for census tract population. Census tract predictions were then aggregated to 
the county. Models were fitted separately for the two study periods. 

Table 2 
Estimated weekly census tract COVID-19 mortality rate ratios (95% confidence 
intervals) associated with a standard deviationa increase in long-term 
(2014–2019 annual average) air pollutant concentration during the Spring/ 
Summer study period, California, March 16 – Oct 18, 2020.  

Models PM2.5 PM10 NO2 O3 

Spring/Summer (March 16 – Oct 18, 2020) 
Crude 

modelb 
1.22 (1.18, 
1.27) 

1.36 (1.31, 
1.42) 

1.27 (1.22, 
1.32) 

0.92 (0.87, 
0.97) 

Fully 
adjustedc 

1.13 (1.09, 
1.17) 

1.16 (1.11, 
1.21) 

1.06 (1.02, 
1.10) 

1.09 (1.04, 
1.14) 

Winter (Oct 19, 2020 – March 7, 2021) 
Crude 

modelb 
1.14 (1.11, 
1.17) 

1.26 (1.22, 
1.29) 

1.22 (1.18, 
1.26) 

0.93 (0.89, 
0.96) 

Fully 
adjustedc 

1.06 (1.03, 
1.08) 

1.07 (1.04, 
1.10) 

1.05 (1.02, 
1.08) 

1.09 (1.06, 
1.13) 

Abbreviations: nitrogen dioxide, NO2; ozone, O3; particulate matter <2.5 μm, 
PM2.5; particulate matter <10 μm, PM10. 
Note: Effect estimates where 95% confidence interval exclude the null (i.e., 1) 
are considered statistically significant at the p-value <0.05 level. 

a Pollutant standard deviation: 2.1 μg/m3 PM2.5; 7.1 μg/m3 PM10; 4.0 ppb 
NO2; 6.9 ppb O3. 

b Negative binomial mixed model adjusted for smooth of calendar week, 
random intercepts for county and for census tract, and random slope on smooth 
of calendar week for county, with an offset for census tract population. 

c Model additionally adjusted for percent over age 65 years, percent Hispanic 
any race, percent Black, percent Asian, social deprivation index, and population 
density. 
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Annesi-Maesano et al., 2012). Further supporting biological plausibility, 
air pollution has been associated with increased risk of morbidity and 
mortality for other viral respiratory infections (Ciencewicki and Jaspers, 
2007), including influenza (Ciencewicki and Jaspers, 2007; Pope et al., 
2004) and lower respiratory tract infections (Estimates of the global, 
2017). 

The future of the COVID-19 pandemic is unknown. It will likely 
continue and evolve into the future, possibly becoming endemic. It is of 
public health importance to understand risk factors associated with 
adverse outcomes of COVID-19 to mitigate disease impact. Evidence, 
including this study, suggests long-term air pollution concentrations to 
be associated with COVID-19 mortality rates in an area (region, county, 
census tract, etc.), indicating that communities with historically higher 
levels of ambient air pollution have a disproportionate burden of 
COVID-19 death (Katoto et al., 2021; Ali and Islam, 2020; Wu et al., 
2020; Lopez-Feldman et al., 2021; Liang et al., 2020; Konstantinoudis 
et al., 2021; Hutter et al., 2020). These communities likely face addi-
tional stressors, including exposure to higher levels of other risk factors 
for COVID-19 severity and mortality (Singh et al., 2020; Ssentongo et al., 
2020; Goodman et al., 2020). Targeting of communities with increased 
vulnerabilities by public health campaigns is an essential component of 
pandemic response for COVID-19 as well as future public health emer-
gencies. Further, the results from this study underscore the health ben-
efits of continued air pollution regulation. Decreased air pollution 
presents the potential for reduction in the burden of COVID-19 and 
possibly other viral respiratory infections (Ciencewicki and Jaspers, 
2007; Pope et al., 2004; Estimates of the global, 2017), with the 
co-benefit of also reducing the many other adverse health outcomes 
linked with long-term air pollution exposure (Hoek et al., 2013; Feigin 
et al., 2016; Cohen et al., 2017; Yang et al., 2019; Eze et al., 2015; Chen 
et al., 2014). 

This study has strengths. First, this study investigated air pollution 
effects during the Spring and Summer (March 2020–October 2020) 
waves as well as the more recent Winter (October 2020–March 2021) 
wave, for which fewer studies have been conducted. Elevated pollution 
effect estimates were replicated in the two study periods, albeit with 
some attenuation for PM2.5 and PM10. Second, our estimate of COVID-19 
mortality was based on statewide death certificate data which reduces 
the possibility of selection bias, since these data capture all deaths 
including those that occurred at home. Third, pollution effect estimates 
were robust to sensitivity analyses assessing a range of study features, 
including outcome definition, modelling assumptions, and additional 
possible confounding variables including test positivity rates and pop-
ulation vaccination percentages. Last, the study setting of California is 
well-suited for this analysis given the large range of air pollution levels 
across the states and its large and diverse population. 

This study has limitations. First, long-term air pollution exposure 
assessment was based on the census tract in which decedents were re-
ported to have been living prior to death. This 6-year annual average 
may not reflect decedents’ actual exposure histories since it does not 
take into account residential mobility in the years prior to death. 
However, pollution effect estimates were similar between 6-year annual 
average exposures and more recent exposure variables (e.g., 1-year and 
2-year annual averages)—which should reduce exposure misclassifica-
tion resulting from decedents moving. Second, given our study design 
we were unable to control for possible confounding variables at the 
individual level. We do control for important area covariates, including 
an index for social deprivation and population density, that may 
confound the relation between long-term air pollution and census tract 
COVID-19 mortality rates. Further, our unit of analysis (census tract) is 
among the finest scale for current studies of long-term air pollution and 
COVID-19 mortality. Nonetheless, inferences based on this study can 
only be made for ecological (census tract-level) associations and not 
directly for individual-level associations. Third, our modelling approach 
does not completely control for spatiotemporal autocorrelation. Our 
models account for the temporal correlation through the complex 

smooth for calendar week, spatial correlation through random in-
tercepts for county and census tract, and spatiotemporal correlation 
though random slopes for county. This approach, however, does not take 
into account distance between census tracts and could lead to spatial 
autocorrelation of residuals. 

5. Conclusion 

This study supports the hypothesis that long-term exposure to 
ambient air pollutants increases the risk of COVID-19 mortality. Positive 
associations with COVID-19 mortality rates were observed for PM2.5, 
PM10, NO2, and O3 during both the Spring/Summer and Winter study 
periods. Public health programs might consider communities with his-
torically high pollution levels for interventions as the pandemic 
continues. 
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